We Offer Worldwide Shipping
Login Wishlist

(±)-Isorhynchophylline

$240

  • Brand : BIOFRON

  • Catalogue Number : BN-O1257

  • Specification : 98%(HPLC)

  • CAS number : 39032-62-7

  • Formula : C22H28N2O4

  • Molecular Weight : 384.5

  • PUBCHEM ID : 146158806

  • Volume : 20mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BN-O1257

Analysis Method

Specification

98%(HPLC)

Storage

2-8°C

Molecular Weight

384.5

Appearance

Botanical Source

Structure Type

Category

SMILES

Synonyms

Isorhyncophylline/7-Isorhynchophylline/7-Isorhyncophylline

IUPAC Name

methyl 2-[(3S)-6'-ethyl-2-oxospiro[1H-indole-3,1'-3,5,6,7,8,8a-hexahydro-2H-indolizine]-7'-yl]-3-methoxyprop-2-enoate

Density

Solubility

Flash Point

Boiling Point

Melting Point

InChl

InChl Key

DAXYUDFNWXHGBE-PYTKWAODSA-N

WGK Germany

RID/ADR

HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:39032-62-7) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

32256369

Abstract

Chronic neuropathic pain poses a significant health problem, for which effective therapy is lacking. The current work aimed to investigate the potential antinociceptive efficacy of isorhynchophylline, an oxindole alkaloid, against neuropathic pain and elucidate mechanisms. Male C57BL/6J mice were subjected to chronic constriction injury (CCI) by loose ligation of their sciatic nerves. Following CCI surgery, the neuropathic mice developed pain-like behaviors, as shown by thermal hyperalgesia in the Hargreaves test and tactile allodynia in the von Frey test. Repetitive treatment of CCI mice with isorhynchophylline (p.o., twice per day for two weeks) ameliorated behavioral hyperalgesia and allodynia in a dose-dependent fashion (5, 15, and 45 mg/kg). The isorhynchophylline-triggered antinociception seems serotonergically dependent, since its antinociceptive actions on neuropathic hyperalgesia and allodynia were totally abolished by chemical depletion of spinal serotonin by PCPA, whereas potentiated by 5-HTP (a precursor of 5-HT). Consistently, isorhynchophylline-treated neuropathic mice showed escalated levels of spinal monoamines especially 5-HT, with depressed monoamine oxidase activity. Moreover, the isorhynchophylline-evoked antinociception was preferentially counteracted by co-administration of 5-HT1A receptor antagonist WAY-100635. In vitro, isorhynchophylline (0.1-10 nM) increased the Emax (stimulation of [35S] GTPγS binding) of 8-OH-DPAT, a 5-HT1A agonist. Of notable benefit, isorhynchophylline was able to correct co-morbidly behavioral symptoms of depression and anxiety evoked by neuropathic pain. Collectively, these findings confirm, for the first time, the disease-modifying efficacy of isorhynchophylline on neuropathic hypersensitivity, and this effect is dependent on spinal serotonergic system and 5-HT1A receptors.

Copyright © 2020 Gao, Zhao, Wang, Yu, Wu and Zhao.

KEYWORDS

5-HT1A receptor; antinociceptive effect; isorhynchophylline; neuropathic pain; serotonin

Title

Isorhynchophylline Exerts Antinociceptive Effects on Behavioral Hyperalgesia and Allodynia in a Mouse Model of Neuropathic Pain: Evidence of a 5-HT1A Receptor-Mediated Mechanism.

Author

Gao KX1, Zhao Q2, Wang GR3, Yu L4, Wu JY1, Zhao X1.

Publish date

2020 Mar 18

PMID

31733831

Abstract

Hyperplasia of airway smooth muscle cells (ASMCs) is key to the progression of asthma. Isorhynchophylline (IRN) derived from Uncaria rhynchophylla can inhibit the proliferation of AMSCs. The major purpose of the current study was to assess the effect of IRN on the asthma symptoms was assessed both in vitro and in vivo, and the associated mechanism of the effect was also explored by focusing on the function of miR-200a. Asthma model was induced using ovalbumin (OVA) method and AMSC hyperplasia model was induced using TGF-β1. The effect of IRN on allergic asthma mice and the effect of IRN on the proliferation of ASMCs were investigated as well, and the changes in miR-200a level and FOXC1/NF-κB pathway were detected. The administration of IRN attenuated the eosinophils recruitment in BALF, reduced collagen deposition in lung tissues, and suppressed production of IgE and pro-inflammation cytokines. IRN also inhibited the proliferation and induced the apoptosis of ASMCs. Moreover, the administration of IRN increased the level of miR-200a while inhibited the activation of FOXC1/NF-κB pathway. However, after the inhibition of miR-200a level, the function of IRN on ASMCs was impaired. Collectively, it was demonstrated that the effect of IRN on asthma relied on the up-regulation of miR-200a, which then deactivated FOXC1/NF-κB pathway.

Copyright © 2019 Elsevier Inc. All rights reserved.

KEYWORDS

Airway smooth muscle cells; Asthma; FOXC1; Isorhynchophylline; miR-200a

Title

Isorhynchophylline exerts anti-asthma effects in mice by inhibiting the proliferation of airway smooth muscle cells: The involvement of miR-200a-mediated FOXC1/NF-κB pathway.

Author

Zhu J1, Wang W2, Wu X3.

Publish date

2020 Jan 22

PMID

31476414

Abstract

Isorhynchophylline (IRN) has been demonstrated to have distinct anti-Alzheimer’s disease (AD) activity in several animal models of AD. In this study, we aimed at evaluating the preventive effect of IRN on the cognitive deficits and amyloid pathology in TgCRND8 mice. Male TgCRND8 mice were administered with IRN (20 or 40 mg/kg) by oral gavage daily for 4 months, followed by assessing the spatial learning and memory functions with the Radial Arm Maze (RAM) test. Brain tissues were determined immunohistochemically or biochemically for changes in amyloid pathology, tau hyperphosphorylation and neuroinflammation. Our results revealed that IRN (40 mg/kg) significantly ameliorated cognitive deficits in TgCRND8 mice. In addition, IRN (40 mg/kg) markedly reduced the levels of Aβ40, Aβ42 and tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and IL-1β, and modulated the amyloid precursor protein (APP) processing and phosphorylation by altering the protein expressions of β-site APP cleaving enzyme-1 (BACE-1), phosphorylated APP (Thr668), presenilin-1 (PS-1) and anterior pharynx-defective-1 (APH-1), as well as insulin degrading enzyme (IDE), a major Aβ-degrading enzyme. IRN was also found to inhibit the phosphorylation of tau at the sites of Thr205 and Ser396. Immunofluorescence showed that IRN reduced the Aβ deposition, and suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the cerebral cortex and hippocampus of TgCRND8 mice. Furthermore, IRN was able to attenuate the ratios of p-c-Jun/c-Jun and p-JNK/JNK in the brains of TgCRND8 mice. IRN also showed marked inhibitory effect on JNK signaling pathway in the Aβ-treated rat primary hippocampus neurons. We conclude that IRN improves cognitive impairment in TgCRND8 transgenic mice via reducing Aβ generation and deposition, tau hyperphosphorylation and neuroinflammation through inhibiting the activation of JNK signaling pathway, and has good potential for further development into pharmacological treatment for AD.

Copyright © 2019 Elsevier Inc. All rights reserved.

KEYWORDS

Alzheimer’s disease; Aβ deposition; Isorhynchophylline; Neuroinflammation; Tau hyperphosphorylation; TgCRND8 mice

Title

Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: Studies in a transgenic mouse model of Alzheimer's disease.

Author

Li HQ1, Ip SP2, Yuan QJ3, Zheng GQ4, Tsim KKW5, Dong TTX6, Lin G7, Han Y8, Liu Y9, Xian YF10, Lin ZX11.

Publish date

2019 Nov


Description :

Empty ...