Shipping to United States We Offer Worldwide Shipping
Login Wishlist

α-Spinasterol

$496

  • Brand : BIOFRON

  • Catalogue Number : BD-P0276

  • Specification : 98.0%(HPLC)

  • CAS number : 481-18-5

  • Formula : C29H48O

  • Molecular Weight : 412.7

  • PUBCHEM ID : 5281331

  • Volume : 25mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0276

Analysis Method

HPLC,NMR,MS

Specification

98.0%(HPLC)

Storage

2-8°C

Molecular Weight

412.7

Appearance

Powder

Botanical Source

spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, bark of Acacia concinu, Acacia caesia, pumpkin seeds and senega root. various marine sponges incl. Axinella cannabina

Structure Type

Steroids

Category

SMILES

CCC(C=CC(C)C1CCC2C1(CCC3C2=CCC4C3(CCC(C4)O)C)C)C(C)C

Synonyms

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,2R,5S)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

IUPAC Name

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,2R,5S)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Applications

Density

1.0±0.1 g/cm3

Solubility

Soluble to 10 mM in ethanol with gentle warming

Flash Point

219.1±20.7 °C

Boiling Point

500.0±44.0 °C at 760 mmHg

Melting Point

168-169°

InChl

InChI=1S/C29H48O/c1-7-21(19(2)3)9-8-20(4)25-12-13-26-24-11-10-22-18-23(30)14-16-28(22,5)27(24)15-17-29(25,26)6/h8-9,11,19-23,25-27,30H,7,10,12-18H2,1-6H3/b9-8+/t20-,21-,22+,23+,25-,26+,27+,28+,29-/m1/s1

InChl Key

JZVFJDZBLUFKCA-FXIAWGAOSA-N

WGK Germany

RID/ADR

HS Code Reference

2937190000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:481-18-5) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

31370334

Abstract

Hyperpigmentation is considered by many to be a beauty problem and is responsible for photoaging. To treat this skin condition, medicinal cosmetics containing tyrosinase inhibitors are used, resulting in skin whitening. In this study, taraxerol methyl ether (1), spinasterol (2), 6-hydroxyflavanone (3), (+)-dihydrokaempferol (4), 3,4-dihydroxybenzoic acid (5), taraxerol (6), taraxerone (7), and lupeol acetate (8) were isolated from Manilkara zapota bark. Their chemical structures were elucidated by analysis of their nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) data, and by comparing them with data found in the literature. The in vitro antityrosinase, antioxidant, and cytotoxic activities of the isolated compounds (1-8) were evaluated. (+)-Dihydrokaempferol (4) exhibited higher monophenolase inhibitory activity than both kojic acid and α-arbutin. However, it showed diphenolase inhibitory activity similar to kojic acid. (+)-Dihydrokaempferol (4) was a competitive inhibitor of both monophenolase and diphenolase activities. It exhibited the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) activities of the isolated compounds. Furthermore, (+)-dihydrokaempferol (4) also demonstrated potent cytotoxicity in breast carcinoma cell line (BT474), lung bronchus carcinoma cell line (Chago-K1), liver carcinoma cell line (HepG2), gastric carcinoma cell line (KATO-III), and colon carcinoma cell line (SW620). These results suggest that M. zapota bark might be a good potential source of antioxidants and tyrosinase inhibitors for applications in cosmeceutical products.

KEYWORDS

Manilkara zapota; Sapotaceae; antioxidant; cytotoxicity; tyrosinase inhibitor.

Title

Antityrosinase, Antioxidant, and Cytotoxic Activities of Phytochemical Constituents from Manilkara zapota L. Bark

Author

Sutthiduean Chunhakant 1, Chanya Chaicharoenpong 2 3

Publish date

2019 Jul 31

PMID

29856129

Abstract

Introduction: Exposures to toxic levels of vanadium and soluble vanadium compounds cause behavioral impairments and neurodegeneration via free radical production. Consequently, natural antioxidant sources have been explored for effective and cheap remedy following toxicity. Grewia carpinifolia has been shown to improve behavioral impairments in vanadium-induced neurotoxicity, however, the active compounds implicated remains unknown. Therefore, this study was conducted to investigate ameliorative effects of bioactive compounds from G. carpinifolia on memory and behavioral impairments in vanadium-induced neurotoxicity.

Methods: Sixty BALB/c mice were equally divided into five groups (A-E). A (control); administered distilled water, B (standard); administered α-tocopherol (500 mg/kg) every 72 hr orally with daily dose of sodium metavanadate (3 mg/kg) intraperitoneally, test groups C, and D; received single oral dose of 100 μg β-spinasterol or stigmasterol (bioactive compounds from G. carpinifolia), respectively, along with sodium metavanadate and the model group E, received sodium metavanadate only for seven consecutive days. Memory, locomotion and muscular strength were accessed using Morris water maze, Open field and hanging wire tests. In vivo antioxidant and neuroprotective activities were evaluated by measuring catalase, superoxide dismutase, MDA, H2 O2 , and myelin basic protein (MBP) expression in the hippocampus.

Results: In Morris water maze, stigmasterol significantly (p ≤ 0.05) decreased escape latency and increased swimming time in target quadrant (28.01 ± 0.02; 98.24 ± 17.38 s), respectively, better than α-tocopherol (52.43 ± 13.25; 80.32 ± 15.21) and β-spinasterol (42.09 ± 14.27; 70.91 ± 19.24) in sodium metavanadate-induced memory loss (112.31 ± 9.35; 42.35 ± 11.05). β-Spinasterol and stigmasterol significantly increased exploration and latency in open field and hanging wire tests respectively. Stigmasterol also increased activities of antioxidant enzymes, decreased oxidative stress markers and lipid peroxidation in mice hippocampal homogenates, and increased MBP expression.

Conclusions: The findings of this study indicate a potential for stigmasterol, a bioactive compound from G. carpinifolia in improving cognitive decline, motor coordination, and ameliorating oxidative stress in vanadium-induced neurotoxicity.

KEYWORDS

antioxidant; behavior; stigmasterol; vanadium; β-spinasterol.

Title

Sodium metavanadate induced cognitive decline, behavioral impairments, oxidative stress and down regulation of myelin basic protein in mice hippocampus: Ameliorative roles of β-spinasterol, and stigmasterol

Author

Olamide Elizabeth Adebiyi 1, James Olukayode Olopade 2, Funsho Olakitike Olayemi 1

Publish date

2018 Jul;

PMID

29143969

Abstract

Despite advances in therapy of breast and ovarian cancers, they still remain among the most imperative causes of cancer death in women. The first can be considered one of the most widespread diseases among females, while the latter is more lethal and needs prompt treatment. Thus, the research field can still benefit from discovery of new compounds that can be of potential use in management of these grave illnesses. We hereby aimed to assess the antitumor activity of the phytosterol α-spinasterol isolated from Ganoderma resinaceum mushroom on human breast cancer cell lines (MCF-7, MDA-MB-231), as well as, on human ovarian cancer cell line (SKOV-3). The anti-tumor activity of α-spinasterol, isolated from the mycelial extract of the Egyptian G. resinaceum, on human breast and ovarian cancer cell lines was evaluated by MTT cell viability assay and AnnexinV/propidium iodide apoptosis assay. The molecular mechanism underlying this effect was assessed by the relative expression of the following markers; tumor suppressor (p53, BRCA1, BRCA2), apoptotic marker (Bax) and cell cycle progression markers (cyclin dependent kinases cdk4/6) using real-time PCR. Cell cycle analysis was performed for the three investigated cancer cell lines to explore the effect on cell cycle progression. Our findings showed that α-spinasterol exhibited a higher antitumor activity on MCF-7 cells relative to SKOV-3 cells, while its lowest antitumor activity was against MDA-MB-231 cells. A significant increase in the expression of p53 and Bax was observed in cells treated with α-spinasterol, while cdk4/6 were significantly down-regulated upon exposure to α-spinasterol. Cell cycle analysis of α-spinasterol treated cells showed a G0 -G1 arrest. In conclusion, α-spinasterol isolated from G. resinaceum mushroom exerts a potent inhibitory activity on breast and ovarian cancer cell lines in a time- and dose-dependent manner. This can be reasonified in lights of the compound’s ability to increase p53 and Bax expressions, and to lower the expression of cdk4/6.

KEYWORDS

Bax; G. resinaceum extract; antitumor; p53; α-spinasterol.

Title

The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines

Author

Nada K Sedky 1, Zaynab H El Gammal 1, Amir E Wahba 2, Eman Mosad 3, Zahraa Y Waly 2, Amira Ali El-Fallal 3, Reem K Arafa 4, Nagwa El-Badri 1

Publish date

2018 May;