Catalogue Number
BN-O1572
Analysis Method
HPLC,NMR,MS
Specification
98%(HPLC)
Storage
-20℃
Molecular Weight
304.3
Appearance
Powder
Botanical Source
This product is isolated and purified from the roots of Scutellaria baicalensis Georgi
Structure Type
Flavonoids
Category
Standards;Natural Pytochemical;API
SMILES
C1=CC(=C(C(=C1)O)C2C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O
Synonyms
2-(2,6-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydro-4H-chromen-4-one/(2R,3R)-2-(2,6-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydro-4H-chromen-4-one/4H-1-Benzopyran-4-one, 2-(2,6-dihydroxyphenyl)-2,3-dihydro-3,5,7-trihydroxy-/4H-1-Benzopyran-4-one, 2-(2,6-dihydroxyphenyl)-2,3-dihydro-3,5,7-trihydroxy-, (2R,3R)-
IUPAC Name
2-(2,6-dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one
Density
1.7±0.1 g/cm3
Solubility
Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Flash Point
273.8±26.4 °C
Boiling Point
713.4±60.0 °C at 760 mmHg
Melting Point
InChl
InChl Key
NBQYBZYBTNQEQG-LSDHHAIUSA-N
WGK Germany
RID/ADR
HS Code Reference
2932990000
Personal Projective Equipment
Correct Usage
For Reference Standard and R&D, Not for Human Use Directly.
Meta Tag
provides coniferyl ferulate(CAS#:80366-15-0) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate
No Technical Documents Available For This Product.
27845856
Context:
The classic androgen synthesis pathway proceeds via dehydroepiandrosterone, androstenedione, and testosterone to 5α-dihydrotestosterone. However, 5α-dihydrotestosterone synthesis can also be achieved by an alternative pathway originating from 17α-hydroxyprogesterone (17OHP), which accumulates in congenital adrenal hyperplasia (CAH). Similarly, recent work has highlighted androstenedione-derived 11-oxygenated 19-carbon steroids as active androgens, and in CAH, androstenedione is generated directly from 17OHP. The exact contribution of alternative pathway activity to androgen excess in CAH and its response to glucocorticoid (GC) therapy is unknown.
Objective:
We sought to quantify classic and alternative pathway-mediated androgen synthesis in CAH, their diurnal variation, and their response to conventional GC therapy and modified-release hydrocortisone.
Methods:
We used urinary steroid metabolome profiling by gas chromatography-mass spectrometry for 24-hour steroid excretion analysis, studying the impact of conventional GCs (hydrocortisone, prednisolone, and dexamethasone) in 55 adults with CAH and 60 controls. We studied diurnal variation in steroid excretion by comparing 8-hourly collections (23:00-7:00, 7:00-15:00, and 15:00-23:00) in 16 patients with CAH taking conventional GCs and during 6 months of treatment with modified-release hydrocortisone, Chronocort.
Results:
Patients with CAH taking conventional GCs showed low excretion of classic pathway androgen metabolites but excess excretion of the alternative pathway signature metabolites 3α,5α-17-hydroxypregnanolone and 11β-hydroxyandrosterone. Chronocort reduced 17OHP and alternative pathway metabolite excretion to near-normal levels more consistently than other GC preparations.
Conclusions:
Alternative pathway-mediated androgen synthesis significantly contributes to androgen excess in CAH. Chronocort therapy appears superior to conventional GC therapy in controlling androgen synthesis via alternative pathways through attenuation of their major substrate, 17OHP.
Modified-Release and Conventional Glucocorticoids and Diurnal Androgen Excretion in Congenital Adrenal Hyperplasia
Christopher M. Jones,1 Ashwini Mallappa,2 Nicole Reisch,3 Nikolaos Nikolaou,1,4 Nils Krone,1,5 Beverly A. Hughes,1 Donna M. O’Neil,1 Martin J. Whitaker,5,6 Jeremy W. Tomlinson,4 Karl-Heinz Storbeck,7 Deborah P. Merke,2 Richard J. Ross,5,6 and Wiebke Arltcorresponding author1,8
2017 Jun 1;
10447743
1999 Jun;
Induction of abortive and productive proliferation in resting human T lymphocytes via CD3 and CD28
Y Muller,* H Wolf,*‡ E Wierenga,† and G Jung*
1999 Jun;
10803412
Ocular pursuit in monkeys, elicited by sinusoidal and triangular (constant velocity) stimuli, was studied before and after lesions of the nucleus of the optic tract (NOT). Before NOT lesions, pursuit gains (eye velocity/target velocity) were close to unity for sinusoidal and constant-velocity stimuli at frequencies up to 1 Hz. In this range, retinal slip was less than 2°. Electrode tracks made to identify the location of NOT caused deficits in ipsilateral pursuit, which later recovered. Small electrolytic lesions of NOT reduced ipsilateral pursuit gains to below 0.5 in all tested conditions. Pursuit was better, however, when the eyes moved from the contra-lateral side toward the center (centripetal pursuit) than from the center ipsilaterally (centrifugal pursuit), although the eyes remained in close proximity to the target with saccadic tracking. Effects of lesions on ipsilateral pursuit were not permanent, and pursuit gains had generally recovered to 60-80% of baseline after about 2 weeks. One animal had bilateral NOT lesions and lost pursuit for 4 days. Thereafter, it had a centrifugal pursuit deficit that lasted for more than 2 months. Vertical pursuit and visually guided saccades were not affected by the bilateral NOT lesions in this animal. We also compared effects of these and similar NOT lesions on opto-kinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Correlation of functional deficits with NOT lesions from this and previous studies showed that rostral lesions of NOT in and around the pretectal oli-vary nucleus, which interrupted cortical input through the brachium of the superior colliculus (BSC), affected both smooth pursuit and OKN. In two animals in which it was tested, NOT lesions that caused a deficit in pursuit also decreased the rapid and slow components of OKN slow-phase velocity and affected OKAN. It was previously shown that slightly more caudal NOT lesions were more effective in altering gain adaptation of the angular vestibulo-ocular relfex (aVOR). The present findings suggest that cortical pathways through rostral NOT play an important role in maintenance of ipsilateral ocular pursuit. Since lesions that affected ocular pursuit had similar effects on ipsilateral OKN, processing for these two functions is probably closely linked in NOT, as it is elsewhere.
Monkey, Smooth pursuit, Optokinetic nystagmus, Nucleus of the optic tract (NOT), Eye movemen
Functions of the nucleus of the optic tract (NOT): II. Control of ocular pursuit
Sergei B. Yakushin, Martin Gizzi, Harvey Reisine, Theodore Raphan, Jean Buttner-Ennever, Bernard Cohen
2007 Oct 9.