We Offer Worldwide Shipping
Login Wishlist

20(R)Ginsenoside Rg3


Catalogue Number : BF-G2005
Specification : 98%
CAS number : 38243-03-7
Formula : C42H72O13
Molecular Weight : 785.01
PUBCHEM ID : 181573
Volume : 20mg

In stock

Checkout Bulk Order?

20(R)Ginsenoside Rg3 (Synonyms: (20R)-Propanaxadiol; R-ginsenoside Rg3)

(20R)-ginsenoside Rg3 ((20R)-Propanaxadiol), one of the active compounds present in ginseng root, inhibits vascular endothelial growth factor (VEGF)(IC50=10 nM) and antitumor activities.

Catalogue Number


Analysis Method






Molecular Weight



White crystalline powder

Botanical Source

roots of Panax ginseng C. A. Mey.

Structure Type



Standards;Natural Pytochemical;API




20(S)-ginsenoside Rg3/(3β,12β)-20-{[2-O-(β-D-Glucopyranosyl)-β-D-glucopyranosyl]oxy}-12-hydroxydammar-24-en-3-yl 6-O-β-D-xylopyranosyl-α-D-glucopyranoside/Ginsenoside Rg3 (R-)/α-D-Glucopyranoside, (3β,12β)-20-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-12-hydroxydammar-24-en-3-yl 6-O-β-D-xylopyranosyl-/Ginsenoside Rg3 Rh2/20(R)Ginsenoside Rg3/R-form-Ginsenoside Rg3/GINSENOSIDE RG3(R-FORM)(P)/(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(10R,12S,13R,14R,17S)-12-hydroxy-17-[(2R)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,10,13,14-pentamethyl-2,3,5,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol/(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(10R,12S,13R,14R,17S)-12-hydroxy-17-[(1R)-1-hydroxy-1,5-dimethyl-hex-4-enyl]-4,4,10,13,14-pentamethyl-2,3,5,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-methylol-tetrahydropyran-3-yl]oxy-6-methylol-tetrahydropyran-3,4,5-triol/Ginsenoside Rg3/20(R)-Ginsenoside-Rg3




1.4±0.1 g/cm3



Flash Point

629.4±34.3 °C

Boiling Point

1117.1±65.0 °C at 760 mmHg

Melting Point



InChl Key


WGK Germany


HS Code Reference


Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:38243-03-7) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate




The authentication of the physico-chemical properties of ginsenosides reference materials as well as qualitative and quantitative batch analytical data based on validated analytical procedures is a prerequisite for certifying good manufacturing practice (GMP). Ginsenoside Rb1 and Rg1, representing protopanaxadiol and protopanaxatriol ginsenosides, respectively, are accepted as marker substances in quality control standards worldwide. However, the current analytical methods for these two compounds recommended by Korean, Chinese, European, and Japanese pharmacopoeia do not apply to red ginseng preparations, particularly the extract, because of the relatively low content of the two agents in red ginseng compared to white ginseng. In manufacturing fresh ginseng into red ginseng products, ginseng roots are exposed to a high temperature for many hours, and the naturally occurring ginsenoside Rb1 and Rg1 are converted to artifact ginsenosides such as Rg3, Rg5, Rh1, and Rh2 during the heating process. The analysis of ginsenosides in commercially available ginseng products in Korea led us to propose the inclusion of the (20S)- and (20R)-ginsenoside Rg3, including ginsenoside Rb1 and Rg1, as additional reference materials for ginseng preparations. (20S)- and (20R)-ginsenoside Rg3 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of those isolated ginsenosides was achieved according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantification, and mass balance tests. The isolated ginsenosides showed 100% purity when determined by the three HPLC systems. Also, the water content was found to be 0.534% for (20S)-Rg3 and 0.920% for (20R)-Rg3, meaning that the net mass balances for (20S)-Rg3 and (20R)-Rg3 were 99.466% and 99.080%, respectively. From these results, we could assess and propose a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 as standard reference materials for GMP-based quality control.


Panax ginseng, (20S)- and (20R)-ginsenoside Rg3, Physico-chemical property, Standard reference material, Documentation


Characterizing a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 to be proposed as standard reference materials


Il-Woung Kim,1 Won Suk Sun,2 Bong-Sik Yun,3 Na-Ri Kim,1 Dongsun Min,2 and Si-Kwan Kim1,*

Publish date

2013 Mar




Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage.

Copyright © 2018 Elsevier B.V. All rights reserved.


20(R)-ginsenoside-Rg3; APAP-induced liver injury; Anti-apoptosis; Anti-inflammation; Oxidative stress; PI3K/AKT signaling pathway


20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.


Zhou YD1, Hou JG2, Liu W1, Ren S1, Wang YP1, Zhang R1, Chen C3, Wang Z4, Li W5.

Publish date

2018 Jun




As shown in our previous studies, 20(R)-ginsenoside Rg3 [20(R)-Rg3] exerts a neuroprotective effect on a rat model of transient focal cerebral ischemia, and the mechanism through which it decreases the mRNA expression of calpain I and caspase-3 has been delineated. However, researchers do not know whether 20(R)-Rg3 exhibits a neuroprotective effect following oxygen-glucose deprivation and reperfusion (OGD/R) injury in vitro. In the present study, 20(R)-Rg3 increased cell viability, decreased the LDH leakage rate, and inhibited the apoptosis rate in a concentration-dependent manner. In addition, 20(R)-Rg3 markedly decreased cleaved caspase-3 protein expression. Furthermore, 20(R)-Rg3 significantly decreased the Bax mRNA and protein levels and increased the levels of Bcl-2 mRNA and protein, subsequently decreasing the Bax/Bcl-2 protein ratio. Based on these findings, 20(R)-Rg3 exerts a neuroprotective effect against OGD/R-induced apoptosis.

Copyright © 2017 Elsevier Ltd. All rights reserved.


20(R)-Ginsenoside Rg3; Apoptosis; Bax; Bcl-2; Oxygen-glucose deprivation/reperfusion


20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion.


He B1, Chen P2, Xie Y2, Li S2, Zhang X2, Yang R2, Wang G3, Shen Z4, Wang H5.

Publish date

2017 Aug 15