We Offer Worldwide Shipping
Login Wishlist



Catalogue Number : AV-B03233
Specification : 95%
CAS number : 137018-33-8
Formula : C43H36O17
Molecular Weight : 824.74
PUBCHEM ID : 10328097
Volume : 5mg

Available on backorder

Checkout Bulk Order?

Catalogue Number


Analysis Method






Molecular Weight



Yellow powder

Botanical Source

Structure Type


Standards;Natural Pytochemical;API




5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl 3,4-di-O-acetyl-2,6-bis-O-[(2E)-3-(4-hydroxyphenyl)-2-propenoyl]-β-D-glucopyranoside/4H-1-Benzopyran-4-one, 3-[[3,4-di-O-acetyl-2,6-bis-O-[(2E)-3-(4-hydroxyphenyl)-1-oxo-2-propen-1-yl]-β-D-glucopyranosyl]oxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-


[(2R,3R,4S,5R,6S)-3,4-diacetyloxy-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-5-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate


1.6±0.1 g/cm3


Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

301.1±27.8 °C

Boiling Point

995.3±65.0 °C at 760 mmHg

Melting Point



InChl Key


WGK Germany


HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:137018-33-8) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.




Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.


DNA barcodes, Fungal systematics, Phytopathogenic fungi, Plant pathology, Taxonomy, Typifications


Genera of phytopathogenic fungi: GOPHY 1


Y. Marin-Felix, J.Z. Groenewald, L. Cai, Q. Chen, S. Marincowitz, I. Barnes, K. Bensch, U. Braun, E. Camporesi, U. Damm, Z.W. de Beer, A. Dissanayake, J. Edwards, A. Giraldo, M. Hernandez-Restrepo, K.D. Hyde, R.S. Jayawardena, L. Lombard, J. Luangsa-ard, A.R. McTaggart, A.Y. Rossman, M. Sandoval-Denis, M. Shen, R.G. Shivas, Y.P. Tan, E.J. van der Linde, M.J. Wingfield, A.R. Wood, J.Q. Zhang, Y. Zhang, P.W. Crous

Publish date

2017 Mar;




The genus Calliscelio Ashmead is presumed to be a diverse group of parasitoids of the eggs of crickets (Orthoptera: Gryllidae). A least one species has been found to be an important factor in depressing cricket pest populations. The New World species of Calliscelio are revised. Forty-two species are recognized, 3 are redescribed: Calliscelio bisulcatus (Kieffer), Calliscelio laticinctus Ashmead, Calliscelio rubriclavus (Ashmead), comb. n.; and 38 are described as new: Calliscelio absconditum Chen & Johnson, sp. n., Calliscelio absum Chen & Johnson, sp. n., Calliscelio alcoa Chen & Masner, sp. n., Calliscelio amadoi Chen & Johnson, sp. n., Calliscelio armila Chen & Masner, sp. n., Calliscelio bidens Chen & Masner, sp. n., Calliscelio brachys Chen & Johnson, sp. n., Calliscelio brevinotaulus Chen & Johnson, sp. n., Calliscelio brevitas Chen & Johnson, sp. n., Calliscelio carinigena Chen & Johnson, sp. n., Calliscelio crater Chen & Johnson, sp. n., Calliscelio crena Chen & Johnson, sp. n., Calliscelio eboris Chen & Johnson, sp. n., Calliscelio extenuatus Chen & Johnson, sp. n., Calliscelio flavicauda Chen & Johnson, sp. n., Calliscelio foveolatus Chen & Johnson, sp. n., Calliscelio gatineau Chen & Johnson, sp. n., Calliscelio glaber Chen & Masner, sp. n., Calliscelio granulatus Chen & Masner, sp. n., Calliscelio latifrons Chen & Johnson, sp. n., Calliscelio levis Chen & Johnson, sp. n., Calliscelio longius Chen & Johnson, sp. n., Calliscelio magnificus Chen & Masner, sp. n., Calliscelio migma Chen & Johnson, sp. n., Calliscelio minutia Chen & Johnson, sp. n., Calliscelio paraglaber Chen & Johnson, sp. n., Calliscelio pararemigio Chen & Masner, sp. n., Calliscelio prolixus Chen & Johnson, sp. n., Calliscelio punctatifrons Chen & Johnson, sp. n., Calliscelio remigio Chen & Masner, sp. n., Calliscelio ruga Chen & Johnson, sp. n., Calliscelio rugicoxa Chen & Masner, sp. n., Calliscelio sfina Chen & Johnson, sp. n., Calliscelio storea Chen & Johnson, sp. n., Calliscelio suni Chen & Johnson, sp. n., Calliscelio telum Chen & Johnson, sp. n., Calliscelio torqueo Chen & Johnson, sp. n., Calliscelio virga Chen & Johnson, sp. n. Four species are treated as junior synonyms of Calliscelio rubriclavus (Ashmead): Anteris nigriceps Ashmead, syn. n., Caloteleia marlattii Ashmead, syn. n., Caloteleia grenadensis Ashmead, syn. n., and Macroteleia ruskini Girault, syn. n.


Egg parasitoid, key, revision, Gryllidae


New World species of the genus Calliscelio Ashmead (Hymenoptera, Platygastridae, Scelioninae)


Hua-yan Chen,1 Lubomir Masner,2 and Norman F. Johnson3

Publish date





Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), locally named as “R’tam”, is an annual and spontaneous plant belonging to the Fabaceae family. In Morocco, Retama genus is located in desert regions and across the Middle Atlas and it has been widely used in traditional medicine in many countries. In this study, we show that Retama monosperma hexane extract presents significant anti-leukemic effects against human Jurkat cells.

Human Jurkat cells, together with other cell lines were screened with different concentrations of Retama monosperma hexane extract at different time intervals. Growth inhibition was determined using luminescent-based viability assays. Cell cycle arrest and apoptosis were measured by flow cytometry analysis. Combined caspase 3 and 7 activities were measured using luminometric caspase assays and immunoblots were performed to analyze expression of relevant pro- and anti-apoptotic proteins. GC-MS were used to determine the chemical constituents of the active extract.

Retama monosperma hexane extract (Rm-HE) showed significant cytotoxicity against Jurkat cells, whereas it proved to be essentially ineffective against both normal mouse fibroblasts (NIH3T3) and normal lymphocytes (TK-6). Cytometric analysis indicated that Rm-HE promoted cell cycle arrest and apoptosis induction accompanied by DNA damage induction indicated by an increase in p-H2A.X levels. Rm-HE induced apoptosis was partially JNK-dependent and characterized by an increase in Fas-L levels together with activation of caspases 8, 3, 7 and 9, whereas neither the pro-apoptotic nor anti-apoptotic mitochondrial membrane proteins analyzed were significantly altered. Chemical identification analysis indicated that α-linolenic acid, campesterol, stigmasterol and sitosterol were the major bioactive components within the extract.

Our data suggest that bioactive compounds present in Rm-HE show significant anti leukemic activity inducing cell cycle arrest and cell death that operates, at least partially, through the extrinsic apoptosis pathway.


Retama monosperma, Acute T-cell leukemia, Cytotoxicity, Apoptosis, Bioactive compounds


Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells


Lamiae Belayachi, Clara Aceves-Luquero, Nawel Merghoub, Youssef Bakri, Silvia Fernandez de Mattos, Saa?d Amzazi, Priam Villalonga

Publish date