We Offer Worldwide Shipping
Login Wishlist

3-Hydroxybakuchiol

$724

  • Brand : BIOFRON

  • Catalogue Number : BN-B1367

  • Specification : 98%(HPLC)

  • CAS number : 178765-54-3

  • Formula : C18H24O2

  • Molecular Weight : 272.38

  • PUBCHEM ID : 56833075

  • Volume : 5mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BN-B1367

Analysis Method

HPLC,NMR,MS

Specification

98%(HPLC)

Storage

-20℃

Molecular Weight

272.38

Appearance

Oil

Botanical Source

Psoralea

Structure Type

Phenols

Category

Standards;Natural Pytochemical;API

SMILES

CC(=CCCC(C)(C=C)C=CC1=CC(=C(C=C1)O)O)C

Synonyms

4-[(1E,3S)-3,7-Dimethyl-3-vinyl-1,6-octadien-1-yl]-1,2-benzenediol/1,2-Benzenediol, 4-[(1E,3S)-3-ethenyl-3,7-dimethyl-1,6-octadien-1-yl]-

IUPAC Name

4-[(1E,3S)-3-ethenyl-3,7-dimethylocta-1,6-dienyl]benzene-1,2-diol

Density

1.0±0.1 g/cm3

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

200.4±23.3 °C

Boiling Point

437.6±45.0 °C at 760 mmHg

Melting Point

InChl

InChI=1S/C18H24O2/c1-5-18(4,11-6-7-14(2)3)12-10-15-8-9-16(19)17(20)13-15/h5,7-10,12-13,19-20H,1,6,11H2,2-4H3/b12-10+/t18-/m1/s1

InChl Key

ZHKCOGVKHHAUBK-NCUBBLFSSA-N

WGK Germany

RID/ADR

HS Code Reference

2933990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:178765-54-3) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

23777606

Abstract

Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells.

Copyright © 2013 Elsevier Inc. All rights reserved.

KEYWORDS

3-OHbk; 3-hydroxybakuchiol; ANOVA; Apoptosis; CsA; Cyclosporine A; DCFDA; DEVDase; DMEM; DMSO; DQ; Dulbecco's Modified Eagle Medium; EGTA; ETC; Electron transport chain; FACS; FITC; G+M; HKII; MPTP; Mitochondria; NADH; OXPHOS; PBS; PI; RFU; ROS; SD; SEM; TMRM; TUNEL; VDAC; analysis of variance; caspase-3-like enzyme; dichlorofluorescein diacetate; dimethyl sulfoxide; duroquinol; electron transport chain; ethylene glycol tetraacetic acid; fluorescein isothiocyanate; fluorescence-activated cell sorting; glucose-6-P; glucose-6-phosphate; glutamate plus malate; hexokinase II; mitochondrial permeability transport pore; oxidative phosphorylation; phosphate buffered saline; propidium iodide; reactive oxygen species; reduced nicotinamide adenine dinucleotide; relative fluorescence units; standard deviation; standard error of the mean; terminal deoxyuridine triphosphate nick end labeling; tetramethylrhodamine methyl ester; voltage-dependent anion channel

Title

Tumor cell death induced by the inhibition of mitochondrial electron transport: the effect of 3-hydroxybakuchiol.

Author

JaNa F1, Faini F, Lapier M, Pavani M, Kemmerling U, Morello A, Maya JD, Jara J, Parra E, Ferreira J.

Publish date

2013 Oct 15


Description :

Empty ...