We Offer Worldwide Shipping
Login Wishlist

3-O-β-D-Glucopyranosylplatycodigenin

$896

  • Brand : BIOFRON

  • Catalogue Number : BD-P0221

  • Specification : 98.0%(HPLC)

  • CAS number : 38337-25-6

  • Formula : C36H58O12

  • Molecular Weight : 682.85

  • PUBCHEM ID : 102185205

  • Volume : 25mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0221

Analysis Method

HPLC,NMR,MS

Specification

98.0%(HPLC)

Storage

2-8°C

Molecular Weight

682.85

Appearance

Powder

Botanical Source

Structure Type

Triterpenoids

Category

SMILES

CC1(CCC2(C(C1)C3=CCC4C(C3(CC2O)C)(CCC5C4(CC(C(C5(CO)CO)OC6C(C(C(C(O6)CO)O)O)O)O)C)C)C(=O)O)C

Synonyms

(4aR,5R,6aR,6aS,6bR,8aR,10R,11S,12aR,14bS)-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

IUPAC Name

(4aR,5R,6aR,6aS,6bR,8aR,10R,11S,12aR,14bS)-5,11-dihydroxy-9,9-bis(hydroxymethyl)-2,2,6a,6b,12a-pentamethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

Applications

Density

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

Boiling Point

Melting Point

InChl

InChI=1S/C36H58O12/c1-31(2)10-11-36(30(45)46)19(12-31)18-6-7-22-32(3)13-20(40)28(48-29-27(44)26(43)25(42)21(15-37)47-29)35(16-38,17-39)23(32)8-9-33(22,4)34(18,5)14-24(36)41/h6,19-29,37-44H,7-17H2,1-5H3,(H,45,46)/t19-,20-,21+,22+,23+,24+,25+,26-,27+,28-,29-,32+,33+,34+,36+/m0/s1

InChl Key

HPVWWHYNAAZHQR-KNSUCORESA-N

WGK Germany

RID/ADR

HS Code Reference

2933990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:38337-25-6) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

28418885

Abstract

Over the last decade kinase inhibitors have witnessed tremendous growth as anti-cancer drugs. Unfortunately, despite their promising clinical successes, a large portion of patients does not benefit from these targeted therapeutics. Vemurafenib is a serine/threonine kinase inhibitor approved for the treatment of melanomas specifically expressing the BRAFV600E mutation. The aim of this study was to develop vemurafenib as PET tracer to determine its potential for identification of tumors sensitive to vemurafenib treatment. Therefore, vemurafenib was labeled with carbon-11 and analyzed for its tumor targeting potential in melanoma xenografts Colo829 (BRAFV600E) and MeWo (BRAFwt) using autoradiography on tissue sections, in vitro tumor cell uptake studies and biodistribution studies in xenografted athymic nu/nu mice. [11C]vemurafenib was synthesized in 21 ± 4% yield (decay corrected, calculated from [11C]CO) in > 99% radiochemical purity and a specific activity of 55 ± 18 GBq/μmol. Similar binding of [11C]vemurafenib was shown during autoradiography and cellular uptake studies in both cell lines. Plasma metabolite analysis demonstrated > 95% intact [11C]vemurafenib in vivo at 45 minutes after injection, indicating excellent stability. Biodistribution studies confirmed the in vitro results, showing similar tumor-to-background ratios in both xenografts models. These preliminary results suggest that identification of BRAFV600E mutations in vivo using PET with [11C]vemurafenib will be challenging.

KEYWORDS

vemurafenib, BRAF, V600E, personalized medicine, PET

Title

Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts

Author

Paul Slobbe,1,2 Albert D. Windhorst,1 Kevin Adamzek,1 Marije Bolijn,1 Robert C. Schuit,1 Daniëlle A.M. Heideman,3 Guus A.M.S. van Dongen,1,2 and Alex J. Poot1

Publish date

2017 Jun 13;

PMID

20921218

Abstract

A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX4D acyltransferase motif at the N-terminal end and a lipid binding motif VX2GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid.

KEYWORDS

Arabidopsis, Cell Wall, Diacylglycerol, Diglyceride, Lipid Synthesis, Triacylglycerol, Yeast Metabolism, Acyltransferase, Cutin

Title

Defective in Cuticular Ridges (DCR) of Arabidopsis thaliana, a Gene Associated with Surface Cutin Formation, Encodes a Soluble Diacylglycerol Acyltransferase*

Author

Sapa Hima Rani,‡,1 T. H. Anantha Krishna,‡,1 Saikat Saha,‡ Arvind Singh Negi,§ and Ram Rajasekharan§,2

Publish date

2010 Dec 3

PMID

30010539

Abstract

Anhydrobiotes are rare microbes, plants and animals that tolerate severe water loss. Understanding the molecular basis for their desiccation tolerance may provide novel insights into stress biology and critical tools for engineering drought-tolerant crops. Using the anhydrobiote, budding yeast, we show that trehalose and Hsp12, a small intrinsically disordered protein (sIDP) of the hydrophilin family, synergize to mitigate completely the inviability caused by the lethal stresses of desiccation. We show that these two molecules help to stabilize the activity and prevent aggregation of model proteins both in vivo and in vitro. We also identify a novel in vitro role for Hsp12 as a membrane remodeler, a protective feature not shared by another yeast hydrophilin, suggesting that sIDPs have distinct biological functions.

Research organism: S. cerevisiae

Title

Synergy between the small intrinsically disordered protein Hsp12 and trehalose sustain viability after severe desiccation

Author

Skylar Xantus Kim,1 Gamze camdere,1 Xuchen Hu,1 Douglas Koshland,1 and Hugo Tapia1

Publish date

2018;