We Offer Worldwide Shipping
Login Wishlist

5,7-Diacetoxyflavone

$1,280

  • Brand : BIOFRON

  • Catalogue Number : BN-O1543

  • Specification : 98%(HPLC)

  • CAS number : 6665-78-7

  • Formula : C19H14O6

  • Molecular Weight : 338.3

  • PUBCHEM ID : 467492

  • Volume : 5mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BN-O1543

Analysis Method

Specification

98%(HPLC)

Storage

-20℃

Molecular Weight

338.3

Appearance

Yellow powder

Botanical Source

This product is isolated and purified from the bark of Oroxylum indicum

Structure Type

Category

SMILES

CC(=O)OC1=CC2=C(C(=C1)OC(=O)C)C(=O)C=C(O2)C3=CC=CC=C3

Synonyms

4-Oxo-2-phenyl-4H-chromene-5,7-diyl diacetate/5.7-Diacetoxy-flavon/Quinoline,5,7-dinitro/5,7-Dinitrochinolin/5,7-Diacetoxy-2-phenyl-chromen-4-on/5,7-di-O-acetyl chrysin/Diacetoxychrysin/5,7-dinitro-quinoline/5,7-diacetoxy-2-phenyl-chromen-4-one/5,7-Diacetoxyflavone/chrysin diacetate/4H-1-Benzopyran-4-one, 5,7-bis(acetyloxy)-2-phenyl-

IUPAC Name

Density

1.3±0.1 g/cm3

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

230.1±30.2 °C

Boiling Point

518.9±50.0 °C at 760 mmHg

Melting Point

InChl

InChl Key

FAVULDRRJPCIGK-UHFFFAOYSA-N

WGK Germany

RID/ADR

HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:6665-78-7) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

1353882

Abstract

Osteocalcin, the most abundant noncollagenous protein in bone, is a marker of bone turnover in normal and disease states. Its synthesis is induced by calcitriol, the active hormonal form of vitamin D, through the vitamin D receptor and a specific vitamin D-responsive element in the osteocalcin gene promoter. Serum concentrations of osteocalcin are under strong genetic influence. To ascertain whether variability in circulating osteocalcin levels may reflect allelic variation in the vitamin D receptor gene, we have analyzed the relationship between frequent restriction fragment length polymorphisms (RFLPs, detected by endonucleases Bsm I, EcoRV, and Apa I) that define human vitamin D receptor alleles and serum osteocalcin in a cohort of normal subjects. In 91 Caucasian subjects, RFLPs in the vitamin D receptor gene predicted circulating osteocalcin levels (P less than 0.0001) independent of age or menopause effects. Since the osteocalcin gene and the vitamin D receptor gene are encoded on different chromosomes, the interaction between these two genes occurs in trans. Thus, common alleles of this trans-acting factor, the vitamin D receptor, are functionally different and contribute to “normal” physiological variability in osteocalcin levels. Preliminary analysis in monozygotic and dizygotic twin pairs indicates that the greater diversity in lumbar spine density between the dizygotic pairs can be explained by divergence in vitamin D receptor alleles. Variations in this receptor and other transacting factor genes may confound physiological studies of regulation of target genes and will need to be considered in future human and animal studies. This approach to genetic analysis provides a paradigm for the study of functional variation in trans-acting factors and the role such variation may play in the generation and evolution of physiological diversity.

Title

Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin.

Author

N A Morrison, R Yeoman, P J Kelly, and J A Eisman

Publish date

1992 Aug 1

PMID

7474076

Abstract

Simian virus 40 large tumor (T) antigen contains three H-2Db-restricted (I, II/III, and V) and one H-2Kb-restricted (IV) cytotoxic T lymphocyte (CTL) epitopes. We demonstrate that a hierarchy exists among these CTL epitopes, since vigorous CTL responses against epitopes I, II/III, and IV are detected following immunization of H-2b mice with syngeneic, T-antigen-expressing cells. By contrast, a weak CTL response against the H-2Db-restricted epitope V was detected only following immunization of H-2b mice with epitope loss variant B6/K-3,1,4 cells, which have lost expression of CTL epitopes I, II/III, and IV. Limiting-dilution analysis confirmed that the lack of epitope V-specific CTL activity in bulk culture splenocytes correlated with inefficient expansion and priming of epitope V-specific CTL precursors in vivo. We examined whether defined genetic alterations of T antigen might improve processing and presentation of epitope V to the epitope V-specific CTL clone Y-5 in vitro and/or overcome the recessive nature of epitope V in vivo. Deletion of the H-2Db-restricted epitopes I and II/III from T antigen did not increase target cell lysis by epitope V-specific CTL clones in vitro. The amino acid sequence SMIKNLEYM, which species an optimized H-2Db binding motif and was found to induce CTL in H-2b mice, did not further reduce epitope V presentation in vitro when inserted within T antigen. Epitope V-containing T-antigen derivatives which retained epitopes I and II/III or epitope IV did not induce epitope V-specific CTL in vivo: T-antigen derivatives in which epitope V replaced epitope I failed to induce epitope V-specific CTL. Recognition of epitope V-H-2Db complexes by multiple independently derived epitope V-specific CTL clones was rapidly and dramatically reduced by incubation of target cells in the presence of brefeldin A compared with the recognition of the other T-antigen CTL epitopes by epitope specific CTL, suggesting that the epitope V-H-2Db complexes either are labile or are present at the cell surface at reduced levels. Our results suggest that processing and presentation of epitope V is not dramatically altered (reduced) by the presence of immunodominant CTL epitopes in T antigen and that the immunorecessive nature of epitope V is not determined by amino acids which flank its native location within simian virus 40 T antigen.

Title

Hierarchy among multiple H-2b-restricted cytotoxic T-lymphocyte epitopes within simian virus 40 T antigen.

Author

L M Mylin, R H Bonneau, J D Lippolis, and S S Tevethia

Publish date

1995 Nov

PMID

2147474

Abstract

The trifunctional enzyme encoding glycinamide ribonucleotide synthetase (GARS)-aminoimidazole ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide transformylase (GART) was cloned by functional complementation of an E. coli mutant using an avian liver cDNA expression library. In E. coli, genes encoding these separate activities (purD, purM, and purN, respectively) produce three proteins. The avian cDNA, in contrast, encodes a single polypeptide with all three enzyme activities. Using the avian DNA as a probe, a cDNA encoding the complete coding sequence of the trifunctional human enzyme was also isolated and sequenced. The deduced amino acid sequence of the human and avian polyproteins show extensive sequence homologies to the bacterial purD, purM, and purN encoded proteins. Avian and human liver RNAs appear to encode both a trifunctional enzyme (G-ARS-AIRS-GART) as well as an RNA which encodes only GARS. The trifunctional protein has been implicated in the pathology of Downs Syndrome and molecular tools are now available to explore this hypothesis. Initial efforts to compare the expression of GARS-AIRS-GART between a normal fibroblast cell line and a Downs Syndrome cell line indicate that the levels of RNA are similar.

Title

De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli.

Author

J Aimi, H Qiu, J Williams, H Zalkin, and J E Dixon

Publish date

1990 Nov 25;


Description :

Empty ...