We Offer Worldwide Shipping
Login Wishlist

Arjungenin

$600

Brand : BIOFRON
Catalogue Number : BD-R0052
Specification : 98%
CAS number : 58880-25-4
Formula : C30H48O6
Molecular Weight : 504.708
PUBCHEM ID : 12444386
Volume : 20mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-R0052

Analysis Method

HPLC,NMR,MS

Specification

98%

Storage

2-8°C

Molecular Weight

504.708

Appearance

Powder

Botanical Source

Structure Type

Triterpenoids

Category

Standards;Natural Pytochemical;API

SMILES

CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CC(C(C5(C)CO)O)O)C)C)C2C1O)C)C(=O)O)C

Synonyms

Arjungenin

IUPAC Name

(1S,4aR,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

Density

1.23

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

Boiling Point

Melting Point

InChl

InChI=1S/C17H20O3/c1-8-7-19-13-6-17(4)12-5-11(12)9(2)15(17)16(14(8)13)20-10(3)18/h7,11-12,15-16H,2,5-6H2,1,3-4H3/t11-,12-,15-,16+,17+/m1/s1

InChl Key

IFIQVSCCFRXSJV-NWCCWSSZSA-N

WGK Germany

RID/ADR

HS Code Reference

2933990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:58880-25-4) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

31767507

Abstract

The present study was to illustrate the agonistic property of arjungenin and arjunic acid towards farnesoid X receptor protein (FXR).The pharmacokinetic properties like molecular interactions, absorption, distribution, metabolism, elimination and toxicity (ADMET) of the ligands were checked through in-silico studies. Protein-ligand docking was carried out using autodock software. Molecular docking analysis confirmed strong binding energy and interaction of arjungenin and arjunic acid with the target protein and the ADMET profiles identified for both compounds were promising.Further in vitro studies were performed in 3T3-L1 adipocyte to verify the agonistic property of arjungenin and arjunic acid. Oil red O staining was done to check differentiation induction. Adiponectin, leptin, triglycerides and total cholesterol levels were quantified. The mRNA expression of FXR, Cyp7a1, PPAR-γ and SREBP-1c were quantified using fluorescent real-time PCR. Cytotoxicity assay was confirmed that up to 150 μM concentration there is no significant cell death on treatment with arjunic acid and arjungenin. Treatment with arjungenin and arjunic acid confirms increased differentiation of the cells with significant (P < 0.05) increase in adiponectin (118.07% and 132.92%) and leptin (133.52% and 149.74%) protein levels compared to the negative control group. After treatment with arjungenin and arjunic acid in 3T3-L1 preadipocytes the mRNA expression of FXR, PPAR-γ and SREBP-1c were significantly (P < 0.01) increased and cyp7a1 was significantly (P < 0.01) decreased when compared with the negative control group. Overall, our results suggest that arjungenin and arjunic acid acts as an FXR agonist and may be useful for rational therapeutic strategies as a novel drug to treat cholesterol mediated metabolic syndrome and insulin resistance. Copyright © 2019 Elsevier Ltd. All rights reserved.

KEYWORDS

Arjungenin; Arjunic acid; FXR agonist; Molecular docking; PPAR-γ; cyp7a1

Title

In-silico therapeutic investigations of arjunic acid and arjungeninas an FXR agonist and validation in 3T3-L1 adipocytes.

Author

T MM1, T A2, P BK1, Fathima A1, Khanum F1.

Publish date

2020 Feb

PMID

28962416

Abstract

Terminalia arjuna is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Alcoholic and aqueous bark extracts of T. arjuna, arjunic acid, arjunetin and arjungenin were evaluated for their potential to inhibit CYP3A4, CYP2D6 and CYP2C9 enzymes in human liver microsomes. We have demonstrated that alcoholic and aqueous bark extract of T. arjuna showed potent inhibition of all three enzymes in human liver microsomes with IC50 values less than 50 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP enzymes in human liver microsomes. Enzyme kinetics studies suggested that the extracts of arjuna showed reversible non-competitive inhibition of all the three enzymes in human liver microsomes. Our findings suggest strongly that arjuna extracts significantly inhibit the activity of CYP3A4, CYP2D6 and CYP2C9 enzymes, which is likely to cause clinically significant drug-drug interactions mediated via inhibition of the major CYP isozymes.

KEYWORDS

CYP enzyme; CYP inhibition; CYP, cytochrome P450; DMSO, dimethyl sulfoxide; HDI, herb-drug interactions; HLM, human liver microsomes; Herb-drug interactions; Human liver microsomes; NADPH, nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt; Terminalia arjuna; Toxicity

Title

In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes.

Author

Varghese A1, Savai J2, Pandita N3, Gaud R4.

Publish date

2015 Feb 17