We Offer Worldwide Shipping
Login Wishlist

Bacopaside II

$628

  • Brand : BIOFRON

  • Catalogue Number : BD-P0312

  • Specification : 98.0%(HPLC)

  • CAS number : 382146-66-9

  • Formula : C47H76O18

  • Molecular Weight : 929.107

  • PUBCHEM ID : 9876264

  • Volume : 25mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0312

Analysis Method

HPLC,NMR,MS

Specification

98.0%(HPLC)

Storage

2-8°C

Molecular Weight

929.107

Appearance

Powder

Botanical Source

Bacopa monnieri

Structure Type

Triterpenoids

Category

SMILES

CC(=CC1COC23CC4(CO2)C(C3C1(C)O)CCC5C4(CCC6C5(CCC(C6(C)C)OC7C(C(C(C(O7)CO)O)OC8C(C(C(C(O8)CO)O)O)O)OC9C(C(C(O9)CO)O)O)C)C)C

Synonyms

None

IUPAC Name

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5R,6R)-5-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-3-hydroxy-2-(hydroxymethyl)-6-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,17R,20R)-16-hydroxy-2,6,6,10,16-pentamethyl-17-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

Applications

Density

1.43

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

Boiling Point

Melting Point

InChl

InChI=1S/C47H76O18/c1-21(2)14-22-18-58-47-19-46(20-59-47)23(38(47)45(22,7)57)8-9-28-43(5)12-11-29(42(3,4)27(43)10-13-44(28,46)6)63-41-37(65-39-34(55)31(52)25(16-49)61-39)36(32(53)26(17-50)62-41)64-40-35(56)33(54)30(51)24(15-48)60-40/h14,22-41,48-57H,8-13,15-20H2,1-7H3/t22-,23-,24-,25+,26-,27+,28-,29+,30-,31+,32-,33+,34-,35-,36+,37-,38+,39+,40+,41+,43+,44-,45+,46+,47-/m1/s1

InChl Key

WZWPYJOPCULCLQ-UOXCDNDQSA-N

WGK Germany

RID/ADR

HS Code Reference

2933990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:382146-66-9) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

31574930

Abstract

Bacopaside (bac) I and II are triterpene saponins purified from the medicinal herb Bacopa monnieri. Previously, we showed that bac II reduced endothelial cell migration and tube formation and induced apoptosis in colorectal cancer cell lines. The aim of the current study was to examine the effects of treatment with combined doses of bac I and bac II using four cell lines representative of the breast cancer subtypes: triple negative (MDA-MB-231), estrogen receptor positive (T47D and MCF7) and human epidermal growth factor receptor 2 (HER2) positive (BT-474). Drug treatment outcome measures included cell viability, proliferation, cell cycle, apoptosis, migration, and invasion assays. Relationships were analysed by one- and two-way analysis of variance with Bonferroni post-hoc analysis. Combined doses of bac I and bac II, each below their half maximal inhibitory concentration (IC50), were synergistic and reduced the viability and proliferation of the four breast cancer cell lines. Cell loss occurred at the highest dose combinations and was associated with G2/M arrest and apoptosis. Migration in the scratch wound assay was significantly reduced at apoptosis-inducing combinations, but also at non-cytotoxic combinations, for MDA-MB-231 and T47D (p < 0.0001) and BT-474 (p = 0.0003). Non-cytotoxic combinations also significantly reduced spheroid invasion of MDA-MB-231 cells by up to 97% (p < 0.0001). Combining bac I and II below their IC50 reduced the viability, proliferation, and migration and invasiveness of breast cancer cell lines, suggesting synergy between bac I and II.

KEYWORDS

bacopaside I, bacopaside II, synergy, breast cancer, migration, spheroid invasion, triple negative breast cancer

Title

Bacopasides I and II Act in Synergy to Inhibit the Growth, Migration and Invasion of Breast Cancer Cell Lines

Author

Helen M. Palethorpe,1,2 Eric Smith,1,2 Yoko Tomita,1,2 Maryam Nakhjavani,1,2 Andrea J. Yool,2 Timothy J. Price,1,2,3 Joanne P. Young,1,2 Amanda R. Townsend,1,2,3 and Jennifer E. Hardingham1,2,*

Publish date

2019 Oct;