Catalogue Number
BD-P0849
Analysis Method
HPLC,NMR,MS
Specification
98.0%(HPLC)
Storage
2-8°C
Molecular Weight
416.382
Appearance
Powder
Botanical Source
Rheum palmatum (Turkey rhubarb)
Structure Type
Quinones
Category
SMILES
CC1=CC(=C2C(=C1)C(=O)C3=C(C2=O)C(=CC=C3)O)OC4C(C(C(C(O4)CO)O)O)O
Synonyms
8-hydroxy-3-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyanthracene-9,10-dione
IUPAC Name
8-hydroxy-3-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyanthracene-9,10-dione
Density
Solubility
Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Flash Point
Boiling Point
Melting Point
InChl
InChI=1S/C21H20O9/c1-8-5-10-15(18(26)14-9(16(10)24)3-2-4-11(14)23)12(6-8)29-21-20(28)19(27)17(25)13(7-22)30-21/h2-6,13,17,19-23,25,27-28H,7H2,1H3/t13-,17-,19+,20-,21-/m1/s1
InChl Key
QKPDYSSHOSPOKH-JNHRPPPUSA-N
WGK Germany
RID/ADR
HS Code Reference
2933990000
Personal Projective Equipment
Correct Usage
For Reference Standard and R&D, Not for Human Use Directly.
Meta Tag
provides coniferyl ferulate(CAS#:4839-60-5) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate
No Technical Documents Available For This Product.
Cloning and sequence of the cDNA corresponding to the variable region of immunoglobin heavy chain MPCl 1
1980 Oct 24;
8759846
The heat shock protein CIpB (HSP100) is a member of the diverse group of Clp polypeptides that function as molecular chaperones and/or regulators of energy-dependent proteolysis. A single-copy gene coding for a ClpB homolog was cloned and sequenced from the unicellular cyanobacterium Synechococcus sp. strain PCC 7942. The predicted polypeptide sequence was most similar to sequences of cytosolic ClpB from bacteria and higher plants (i.e., 70 to 75%). Inactivation of clpB in Synechococcus sp. strain PCC 7942 resulted in no significant differences from the wild-type phenotype under optimal growth conditions. In the wild type, two forms of ClpB were induced during temperature shifts from 37 to 47.5 or 50 degrees C, one of 92 kDa, which matched the predicted size, and another smaller protein of 78 kDa. Both proteins were absent in the delta clpB strain. The level of induction of the two ClpB forms in the wild type increased with increasingly higher temperatures, while the level of the constitutive ClpC protein remained unchanged. In the delta clpB strain, however, the ClpC content almost doubled during the heating period, presumably to compensate for the loss of ClpB activity. Photosynthetic measurements at 47.5 and 50 degrees C showed that the null mutant was no more susceptible to thermal inactivation than the wild type. Using photosynthesis as a metabolic indicator, an assay was developed for Synechococcus spp. to determine the importance of ClpB for acquired thermotolerance. Complete inactivation of photosynthetic oxygen evolution occurred in both the wild type and the delta clpB strain when they were shifted from 37 directly to 55 degrees C for 10 min. By preexposing the cells at 50 degrees C for 1.5 h, however, a significant level of photosynthesis was retained in the wild type but not in the mutant after the treatment at 55 degrees C for 10 min. Cell survival determinations confirmed that the loss of ClpB synthesis caused a fivefold reduction in the ability of Synechococcus cells to develop thermotolerance. These results clearly show that induction of ClpB at high temperatures is vital for sustained thermotolerance in Synechococcus spp., the first such example for either a photosynthetic or a prokaryotic organism.
The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942.
M J Eriksson and A K Clarke
1996 Aug;
9471964
Pseudomonas pseudoalcaligenes JS45 utilizes nitrobenzene as the sole source of nitrogen, carbon, and energy. Previous studies have shown that degradation of nitrobenzene involves the reduction of nitrobenzene to nitrosobenzene and hydroxylaminobenzene, followed by rearrangement to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. In the present paper, we report the enzymatic reactions responsible for the release of ammonia after ring cleavage. 2-Aminomuconic semialdehyde was oxidized to 2-aminomuconate in the presence of NAD by enzymes in crude extracts. 2-Aminomuconate was subsequently deaminated stoichiometrically to 4-oxalocrotonic acid. No cofactors are required for the deamination. Two enzymes, 2-aminomuconic semialdehyde dehydrogenase and a novel 2-aminomuconate deaminase, distinguished by partial purification of the crude extracts, catalyzed the two reactions. 4-Oxalocrotonic acid was further degraded to pyruvate and acetaldehyde. The key enzyme, 2-aminomuconate deaminase, catalyzed the hydrolytic deamination that released ammonia, which served as the nitrogen source for growth of the organism.
Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde.
Z He and J C Spain
1997 Dec