We Offer Worldwide Shipping
Login Wishlist

Coptisine Sulfate


  • Brand : BIOFRON

  • Catalogue Number : BF-C2012

  • Specification : 98%

  • CAS number : 1198398-71-8

  • Formula : C19H15NO8S

  • Molecular Weight : 417.39

  • PUBCHEM ID : 72322

  • Volume : 20mg

In stock

Checkout Bulk Order?

Catalogue Number


Analysis Method






Molecular Weight




Botanical Source

Coptis chinensis,Corydalis yanhusuo

Structure Type






hydrogen sulfate;5,7,17,19-tetraoxa-13-azoniahexacyclo[,10.04,8.015,23.016,20]tetracosa-1(13),2,4(8),9,14,16(20),21,23-octaene





Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

Boiling Point

Melting Point



InChl Key


WGK Germany


HS Code Reference


Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:1198398-71-8) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate




Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.


Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains


Jenny L. Draper,corresponding authora,b,c Lori M. Hansen,d David L. Bernick,b Samar Abedrabbo,c Jason G. Underwood,e Nguyet Kong,f Bihua C. Huang,f Allison M. Weis,f Bart C. Weimer,f Arnoud H. M. van Vliet,g Nader Pourmand,b Jay V. Solnick,corresponding authord Kevin Karplus,corresponding authorb and Karen M. Ottemanncorresponding authorc

Publish date

2017 Jan-Feb

Description :

Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6(*)1 and CYP2D6(*)10 using cell-based models in vitro. PUMID/DOI:DOI: 10.1038/aps.2013.202 Acta Pharmacol Sin. 2014 May;35(5):685-96. AIM:Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6(*)1 and CYP2D6(*)10 in vitro.METHODS:HepG2 cells were stably transfected with CYP2D6(*)1 and CYP2D6(*)10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry.RESULTS:HepG2-CYP2D6(*)1 and HepG2-CYP2D6(*)10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6(*)1- and CYP2D6(*)10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6(*)1 and CYP2D6(*)10. However, their Ki values for CYP2D6(*)1 and CYP2D6(*)10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants.CONCLUSION:Six phytochemicals inhibit CYP2D6(*)1 and CYP2D6(*)10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. Suppression of human breast cancer cell metastasis by coptisine in vitro. PUMID/DOI:25081696 Asian Pac J Cancer Prev. 2014;15(14):5747-51. BACKGROUND:Coptisine, an isoquinoline alkaloid extracted from Coptidis rhizoma, has many biological activities such as antidiabetic, antimicrobial and antiviral actions. However, whether coptisine exerts anti-cancer metastasis effects remains unknown.MATERIALS AND METHODS:Effects of coptisine on highly metastatic human breast cancer cell MDA-MB-231 proliferation were evaluated by trypan blue assay and on cell adhesion, migration and invasion by gelatin adhesion, wound-healing and matrigel invasion chamber assays, respectively. Expression of two matrix metalloproteinases (MMPs), MMP-9, MMP-2 and their specific inhibitors tissue inhibitor of metalloproteinase 1 (TIMP-1) and tissue inhibitor of metalloproteinase 2 (TIMP-2) were analyzed by RT-PCR.RESULTS:Coptisine obviously inhibited adhesion to an ECM-coated substrate, wound healing migration, and invasion through the matrigel in MDA-MB-231 breast cancer cells. RT-PCR revealed that coptisine reduced the expression of the ECM degradation-associated gene MMP-9 at the mRNA level, and the expression of TIMP-1 was up-regulated in MDA-MB-231 cells, while the expression of MMP-2 and its specific inhibitor TIMP-2 was not affected.CONCLUSIONS:Taken together, our data showed that coptisine suppressed adhesion, migration and invasion of MDA-MB-231 breast cancer cells in vitro, the down-regulation of MMP-9 in combination with the increase of TIMP-1 possibly contributing to the anti-metastatic function. Coptisine might be a potential drug candidate for breast cancer therapy. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. PUMID/DOI:DOI: 10.1016/j.fitote.2015.06.005 Fitoterapia. 2015 Sep;105:139-46. It is known that obesity resulted from consumption of diets high in fat and calories and associated with a chronic low-grade inflammation. Because the fat, sterol and bile acid metabolism of male Syrian golden hamster are more similar to that of human, in the present study, high fat and high cholesterol (HFHC) induced obese hamsters were used to evaluate the anti-inflammation and hypolipidemic role of coptisine. The results showed that body weight, plasma lipid levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-c), very low density lipoprotein-cholesterol (VLDL-c), ApoB and pro-inflammatory cytokines including TNF-α, IL-6 and lipopolysaccharide (LPS) were significantly altered in hamsters fed with HFHC diet. A strong correlation was observed between the LPS level in serum and the level of LBP and pro-inflammatory cytokines. Coptisine from the concentrations of 60 to 700 mg/L dose-dependently inhibited Enterobacter cloacae growth, which can easily induce obesity and insulin resistance. The results of endotoxin neutralization assay suggest that coptisine is capable of reducing the LPS content under inflammation status. Real time RT-PCR analyses revealed that coptisine suppressed TLR-4 in visceral fat of hamsters and decreased CD14 expression in livers of hamsters. These encouraging findings make the development of coptisine a good candidate for preventing obesity-related diseases through the LPS/TLR-4-mediated signaling pathway. Coptisine Prevented IL-β-Induced Expression of Inflammatory Mediators in Chondrocytes. PUMID/DOI:DOI: 10.1007/s10753-016-0391-6 Inflammation. 2016 Aug;39(4):1558-65. Interleukin 1β (IL-1β) is a pleiotropic pro-inflammatory cytokine that plays a critical role in the development of osteoarthritis (OA). Coptisine is an isoquinoline alkaloid extracted from Coptidis rhizome and has been reported to possess anti-inflammatory activity. However, the anti-inflammatory effects of coptisine on interleukin-1 beta (IL-1β)-stimulated chondrocytes have not been reported. Therefore, the aim of this study was to investigate the effects of coptisine on IL-1β-induced inflammation in human articular chondrocytes. Our results showed that coptisine greatly inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in human OA chondrocytes induced by IL-1β. It also inhibited the expression of matrix metalloproteinase-3 (MMP-3) and MMP-13 in IL-1β-stimulated human OA chondrocytes. Furthermore, coptisine significantly inhibited the IL-1β-induced NF-kB activation in human OA chondrocytes. Taken together, these data suggest that coptisine inhibits the IL-1β-induced inflammatory response by suppressing the NF-kB signaling pathway. Thus, coptisine may be a potential agent in the treatment of OA. Unraveling the novel anti-osteosarcoma function of coptisine and its mechanisms. PUMID/DOI:DOI: 10.1016/j.toxlet.2014.02.021 Toxicol Lett. 2014 May 2;226(3):328-36. Uncontrolled cell proliferation and robust angiogenesis play critical roles in osteosarcoma growth and metastasis. In this study we explored novel agents derived from traditional Chinese medicinal herbs that potently inhibit osteosarcoma growth and metastasis. Coptisine, an active component of the herb Coptidis rhizoma, markedly inhibited aggressive osteosarcoma cell proliferation. Coptisine induced cell cycle arrest at the G0/G1 phase through downregulation of CDK4 and cyclin D1 expression and effectively suppressed tumor growth in a xenografted mouse model. Coptisine significantly impeded osteosarcoma cell migration, invasion, and capillary-like network formation by decreasing the expression of VE-cadherin and integrin ?, and diminishing STAT3 phosphorylation. Coptisine significantly elevated blood erythrocyte and hemoglobin levels while still remaining within the normal range. It also moderately increased white blood cell and platelet counts. These data suggest that coptisine exerts a strong anti-osteosarcoma effect with very low toxicity and is a pote