Shipping to United States We Offer Worldwide Shipping
Login Wishlist

(-)-Epigallocatechin gallate

$43

  • Brand : BIOFRON

  • Catalogue Number : BF-E1002

  • Specification : 98%

  • CAS number : 989-51-5

  • Formula : C22H18O11

  • Molecular Weight : 458.38

  • PUBCHEM ID : 65064

  • Volume : 20mg

In stock

Quantity
Checkout Bulk Order?

Catalogue Number

BF-E1002

Analysis Method

HPLC,NMR,MS

Specification

98%

Storage

2-8°C

Molecular Weight

458.38

Appearance

White crystalline powder

Botanical Source

Vitis vinifera,Acacia catechu,Camellia sinensis,Camellia sinensis var. assamica,Toona sinensis

Structure Type

Flavonoids

Category

Standards;Natural Pytochemical;API

SMILES

C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C(=C3)O)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O

Synonyms

TEA CATECHIN/(-)-epigallocatechin 3-gallate/(2R,3R)-5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate/Epigallocatechin 3-gallate/EGCG/Benzoic acid, 3,4,5-trihydroxy-, (2R,3R)-3,4-dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3-yl ester/(-)-Epigallocatechin-3-o-gallate/Epigallocatechin gallate/E-5187/(-)-Epigallocatechin 3-O-gallate/3,4,5-Trihydroxybenzoic acid (2R-cis)-3,4-dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3-yl ester/(-)-EGCG/Teavigo/ECGC/Teavigo TG/(-)-Epigallocatechin gallate/EGCG-d6/Epigallocatechin-3-gallate/(−)-cis-3,3',4',5,5',7-Hexahydroxy-flavane-3-gallate

IUPAC Name

[(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate

Applications

(-)-Epigallocatechin Gallate is an antioxidant polyphenol flavonoid form green tea, and inhibits the activation of EGFR, HER2 and HER3, with antitumor activity.

Density

1.9±0.1 g/cm3

Solubility

Methanol; Water

Flash Point

320.0±27.8 °C

Boiling Point

909.1±65.0 °C at 760 mmHg

Melting Point

222-224°C

InChl

InChl Key

WGK Germany

RID/ADR

HS Code Reference

2932990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:989-51-5) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

PMID

32012499

Abstract

INTRODUCTION:
There has been demonstrated that pharmaceutical effect of epigallocatechin-3-gallate (EGCG), a polyphenol, which is found in green tea (Camellia sinensis), is implemented through the activation of Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2).The importance of Keap1 / Nrf2 / antioxidant response element (ARE) system is determined by the fact that the state of NF-κB- and АР-1-associated pathways depends on its activity. Recent studies have demonstrated the property of quercetin to suppress ubiquitin-dependent proteolysis of complex of NF-κB and its inhibitory protein IκB. All this provides preconditions to eliminate the potentiality of NF-κB-dependent expression of the number of genes of pro-oxidant and pro-inflammatory proteins. However, co-effect produced by quercetin and EGCG on the oxidative nitrosative stress markers in the periodontal tissues is still unclear.

THE AIM:
To investigate the co-effect produced by quercetin and an inducer of the Keap1 / Nrf2 / ARE epigallocatechin-3-gallate on markers of oxidative-nitrosative stress in rats’ periodontium under the systemic and local administration of Salmonella typhi lipopolysaccharide (LPS).

MATERIAL AND METHODS:
The studies were conducted on 30 white rats of the Wistar line, divided into 5 groups: the 1st included intact animals, the 2nd was made up of animals after their exposure to combined systemic and local LPS administration, the 3rd and 4th groups included animals, which were given injections with water-soluble form of quercetin (corvitin) and EGCG respectively, and the 5th group involved rats, which were injected with co-administered corvitin and EGCG. The formation of superoxide anion radical (.О-2 ) was evaluated by a test with nitro blue tetrazolium using spectrophotometry of the periodontal soft tissue homogenate. The total activity of NO-synthase and concentration of peroxynitrite in the homogenate of the soft components of periodontium were evaluated spectrophotometrically.

RESULTS:
Co-effect produced by corvitin and EGCG under systemic and local LPS administration is accompanied with reduced О-2 production by NADPH-dependent electron transport chains (microsomal and NOS) by 20.0 % (p <0.05) compared with values for the animals received separate corvitin during the experiment. .О-2 generation by the mitochondrial respiratory chain yielded to comparable data of the 3rd and 4th groups by 27.6 % (p <0.01) and 23.8 % (p <0.05) respectively. No differences were found between the groups exposed to combined or separate action of the above mentioned agents in the experiment when assessing О-2 generation by leukocyte NADPH-oxidase. Combined effect of corvitin and EGCG during systemic and local LSP administration showed the decrease in NOS activity and peroxynitrite concentration in periodontal tissues by 53.3 % (p <0.001) and 27.0 % (p <0.02) compared with the findings in the 3rd group, and by 42.0 % (p <0.01) and 22.3 % (p <0.01) in the 4th group.

CONCLUSIONS:
The co-administration of water-soluble form of quercetin and epigallocatechin-3-gallate under systemic and local introducing of lipopolysaccharide Salmonella typhi has been proven to be more effective means for preventing and correcting oxidative-nitrosative stress in the periodontal tissues than this occurs at separate administration of each of the polyphenols.

KEYWORDS

signal pathway Keap1 / Nrf2 / ARE; epigallocatechin-3-gallate; quercetin; lipopolysaccharide-induced systemic inflammatory response; oxidative-nitrosative stress; periodontium

Title

Quercetin potentiates antiradical properties of epigallocatechin-3-gallate in periodontium of rats under systemic and local administration of lipopolisaccharide of salmonella typhi

Author

Yelins’ka AM1, Liashenko LI1, Kostenko VO1.

Publish date

2019 Aug 31;

PMID

31957424

Abstract

(-)-Epigallocatechin gallate (EGCG) had a significant effect on Maillard reaction intermediate formation in the xylose/alanine model system. A trapping effect of EGCG on the reactive deoxyosones was observed to change the reaction pathways. The rate constant of Amadori rearrangement product (ARP) conversion to deoxyosones was decreased with EGCG addition, indicating an inhibition of ARP degradation. Dehydration improved the ARP formation during the thermal reaction and synergistically improved the yield of ARP with the EGCG trapping effect on the deoxyosones. Additionally, EGCG decreased the activation energy for the conversion of xylose/alanine to ARP (from 77.8 to 62.8 kJ/mol) and in turn accelerated the ARP formation. The effect of EGCG was further facilitated at the optimal conditions of 90 °C, at pH 7.5, and a molar ratio of xylose to alanine of 2:1, which improved the yield of ARP (N-(1-deoxy-d-xylulos-1-yl)alanine) from 2 to 95%

KEYWORDS

Amadori compound; EGCG; Maillard reaction; browning inhibition; deoxypentosone

Title

Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of N-(1-Deoxy-d-xylulos-1-yl)alanine.

Author

Yu J1, Cui H1, Tang W1, Hayat K2, Hussain S2, Tahir MU3, Gao Y1, Zhang X1, Ho CT4.

Publish date

2020 Feb 12

PMID

31948527

Abstract

OBJECTIVE:
To study the effect of epigallocatechin-3-gallate (EGCG) on liver lipid metabolism in rats with intrauterine growth restriction (IUGR) and related mechanism.

METHODS:
A rat model of IUGR was established by food restriction during entire pregnancy, and then the rats were randomly divided into an IUGR group and an EGCG group (n=8 each). The rats in the EGCG group were fed with water containing EGCG from after weaning to 10 weeks. Eight pup rats born from the pregnant maternal rats without food restriction were used as the control group. At the age of 13 weeks, body weight was measured. Blood and liver tissue samples were collected to measure fasting total cholesterol (TC), triglyceride (TG), free fatty acid (FFA), fasting plasma glucose (FPG), fasting insulin (FINS), and liver lipids. Homeostasis model assessment of insulin resistance (HOMA-IR) and adipose insulin resistance (adipo-IR) were calculated. Pathological sections of the liver were observed and quantitative real-time PCR was used to measure the mRNA expression of related genes in the liver.

RESULTS:
At the age of 13 weeks, there was no significant difference in body weight between groups (P=0.067). There were significant differences between groups in FPG, FFA, FINS, HOMA-IR, and adipo-IR (P<0.05). There were no significant differences in the serum levels of TC and TG between groups (P>0.05), while the IUGR group had significantly higher levels of TC and TG in the liver than the EGCG group (P<0.05). Oil red staining showed that the IUGR group had a significant increase in hepatic lipid accumulation, while the EGCG group had certain improvement after EGCG treatment. PCR results suggested that compared with the control group, the IUGR group had significant reductions in the mRNA expression of Ampk and Adipor1 and a significant increase in the mRNA expression of Srebf1 (P<0.05), while EGCG increased the mRNA expression of Ampk and reduced the mRNA expression of Srebf1, with no significant differences in the two indices between the EGCG and control groups (P>0.05).

CONCLUSIONS:
Early EGCG intervention can down-regulate the de novo synthesis of fatty acids through the Ampk/Srebf1 signaling pathway and reduce hepatic lipid accumulation in IUGR rats by improving insulin resistance of hepatocytes.

Title

[Effect of epigallocatechin-3-gallate on liver lipid metabolism in rats with intrauterine growth restriction and related mechanism].

Author

Chen LH1, Wu M, Hu XH, Wang YF.

Publish date

2020 Jan