We Offer Worldwide Shipping
Login Wishlist

Epoxylathyrol

$807

  • Brand : BIOFRON

  • Catalogue Number : BN-O0016

  • Specification : 98%(HPLC)

  • CAS number : 28649-60-7

  • Formula : C20H30O5

  • Molecular Weight : 350.4

  • PUBCHEM ID : 6443462

  • Volume : 20mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BN-O0016

Analysis Method

Specification

98%(HPLC)

Storage

-20℃

Molecular Weight

350.4

Appearance

Powder

Botanical Source

This product is isolated and purified from the seeds of Euphorbia lathyris L.

Structure Type

Category

SMILES

CC1CC2(C(C1O)C(C3(CCC4C(C4(C)C)C=C(C2=O)C)CO3)O)O

Synonyms

IUPAC Name

Applications

Density

1.3±0.1 g/cm3

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

190.9±23.6 °C

Boiling Point

542.3±50.0 °C at 760 mmHg

Melting Point

InChl

InChl Key

VEFQDSXSELSHMX-YFHOEESVSA-N

WGK Germany

RID/ADR

HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:28649-60-7) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

27350567

Abstract

Both TDP-43 pathology and failure of RNA editing of AMPA receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of the majority of patients with amyotrophic lateral sclerosis (ALS). AR2 mice, in which an RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is conditionally knocked out in the motor neurons, exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons through a Ca2+-permeable AMPA receptor-mediated mechanism. Therefore, amelioration of the increased Ca2+ influx by AMPA receptor antagonists may be a potential ALS therapy. Here, we showed that orally administered perampanel, a selective, non-competitive AMPA receptor antagonist significantly prevented the progression of the ALS phenotype and normalized the TDP-43 pathology-associated death of motor neurons in the AR2 mice. Given that perampanel is an approved anti-epileptic drug, perampanel is a potential candidate ALS drug worthy of a clinical trial.

Title

The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice

Author

Megumi Akamatsu,1,2,* Takenari Yamashita,1,2,* Naoki Hirose,1,2 Sayaka Teramoto,1,2 and Shin Kwaka,1,3

Publish date

2016;

PMID

18667422

Abstract

To elucidate the heme acquisition system in pathogenic bacteria, we investigated the heme-binding properties of the third NEAT domain of IsdH (IsdH-NEAT3), a receptor for heme located on the surfaces of pathogenic bacterial cells, by using x-ray crystallography, isothermal titration calorimetry, examination of absorbance spectra, mutation analysis, size-exclusion chromatography, and analytical ultracentrifugation. We found the following: 1) IsdH-NEAT3 can bind with multiple heme molecules by two modes; 2) heme was bound at the surface of IsdH-NEAT3; 3) candidate residues proposed from the crystal structure were not essential for binding with heme; and 4) IsdH-NEAT3 was associated into a multimeric heme complex by the addition of excess heme. From these observations, we propose a heme-binding mechanism for IsdH-NEAT3 that involves multimerization and discuss the biological importance of this mechanism.

Title

Structural Basis for Multimeric Heme Complexation through a Specific Protein-Heme Interaction THE CASE OF THE THIRD NEAT DOMAIN OF IsdH FROM STAPHYLOCOCCUS AUREUS*S⃞

Author

Masato Watanabe,‡ Yoshikazu Tanaka,‡§¶,1 Ayuko Suenaga,‡ Makoto Kuroda,∥ Min Yao,¶ Nobuhisa Watanabe,¶ Fumio Arisaka,** Toshiko Ohta,∥ Isao Tanaka,¶ and Kouhei Tsumoto‡,2

Publish date

2008 Oct 17

PMID

30191554

Abstract

Background
Falls in care facilities and hospitals are common events that cause considerable morbidity and mortality for older people. This is an update of a review first published in 2010 and updated in 2012.

Objectives
To assess the effects of interventions designed to reduce the incidence of falls in older people in care facilities and hospitals.

Search methods
We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (August 2017); Cochrane Central Register of Controlled Trials (2017, Issue 8); and MEDLINE, Embase, CINAHL and trial registers to August 2017.

Selection criteria
Randomised controlled trials of interventions for preventing falls in older people in residential or nursing care facilities, or hospitals.

Data collection and analysis
One review author screened abstracts; two review authors screened full‐text articles for inclusion. Two review authors independently performed study selection, ‘Risk of bias’ assessment and data extraction. We calculated rate ratios (RaR) with 95% confidence intervals (CIs) for rate of falls and risk ratios (RRs) and 95% CIs for outcomes such as risk of falling (number of people falling). We pooled results where appropriate. We used GRADE to assess the quality of evidence.

Main results
Thirty‐five new trials (77,869 participants) were included in this update. Overall, we included 95 trials (138,164 participants), 71 (40,374 participants; mean age 84 years; 75% women) in care facilities and 24 (97,790 participants; mean age 78 years; 52% women) in hospitals. The majority of trials were at high risk of bias in one or more domains, mostly relating to lack of blinding. With few exceptions, the quality of evidence for individual interventions in either setting was generally rated as low or very low. Risk of fracture and adverse events were generally poorly reported and, where reported, the evidence was very low‐quality, which means that we are uncertain of the estimates. Only the falls outcomes for the main comparisons are reported here.

Care facilities

Seventeen trials compared exercise with control (typically usual care alone). We are uncertain of the effect of exercise on rate of falls (RaR 0.93, 95% CI 0.72 to 1.20; 2002 participants, 10 studies; I² = 76%; very low‐quality evidence). Exercise may make little or no difference to the risk of falling (RR 1.02, 95% CI 0.88 to 1.18; 2090 participants, 10 studies; I² = 23%; low‐quality evidence).

There is low‐quality evidence that general medication review (tested in 12 trials) may make little or no difference to the rate of falls (RaR 0.93, 95% CI 0.64 to 1.35; 2409 participants, 6 studies; I² = 93%) or the risk of falling (RR 0.93, 95% CI 0.80 to 1.09; 5139 participants, 6 studies; I² = 48%).

There is moderate‐quality evidence that vitamin D supplementation (4512 participants, 4 studies) probably reduces the rate of falls (RaR 0.72, 95% CI 0.55 to 0.95; I² = 62%), but probably makes little or no difference to the risk of falling (RR 0.92, 95% CI 0.76 to 1.12; I² = 42%). The population included in these studies had low vitamin D levels.

Multifactorial interventions were tested in 13 trials. We are uncertain of the effect of multifactorial interventions on the rate of falls (RaR 0.88, 95% CI 0.66 to 1.18; 3439 participants, 10 studies; I² = 84%; very low‐quality evidence). They may make little or no difference to the risk of falling (RR 0.92, 95% CI 0.81 to 1.05; 3153 participants, 9 studies; I² = 42%; low‐quality evidence).

Hospitals

Three trials tested the effect of additional physiotherapy (supervised exercises) in rehabilitation wards (subacute setting). The very low‐quality evidence means we are uncertain of the effect of additional physiotherapy on the rate of falls (RaR 0.59, 95% CI 0.26 to 1.34; 215 participants, 2 studies; I² = 0%), or whether it reduces the risk of falling (RR 0.36, 95% CI 0.14 to 0.93; 83 participants, 2 studies; I² = 0%).

We are uncertain of the effects of bed and chair sensor alarms in hospitals, tested in two trials (28,649 participants) on rate of falls (RaR 0.60, 95% CI 0.27 to 1.34; I² = 0%; very low‐quality evidence) or risk of falling (RR 0.93, 95% CI 0.38 to 2.24; I² = 0%; very low‐quality evidence).

Multifactorial interventions in hospitals may reduce rate of falls in hospitals (RaR 0.80, 95% CI 0.64 to 1.01; 44,664 participants, 5 studies; I² = 52%). A subgroup analysis by setting suggests the reduction may be more likely in a subacute setting (RaR 0.67, 95% CI 0.54 to 0.83; 3747 participants, 2 studies; I² = 0%; low‐quality evidence). We are uncertain of the effect of multifactorial interventions on the risk of falling (RR 0.82, 95% CI 0.62 to 1.09; 39,889 participants; 3 studies; I² = 0%; very low‐quality evidence).

Authors’ conclusions
In care facilities: we are uncertain of the effect of exercise on rate of falls and it may make little or no difference to the risk of falling. General medication review may make little or no difference to the rate of falls or risk of falling. Vitamin D supplementation probably reduces the rate of falls but not risk of falling. We are uncertain of the effect of multifactorial interventions on the rate of falls; they may make little or no difference to the risk of falling.

In hospitals: we are uncertain of the effect of additional physiotherapy on the rate of falls or whether it reduces the risk of falling. We are uncertain of the effect of providing bed sensor alarms on the rate of falls or risk of falling. Multifactorial interventions may reduce rate of falls, although subgroup analysis suggests this may apply mostly to a subacute setting; we are uncertain of the effect of these interventions on risk of falling.

Title

Interventions for preventing falls in older people in care facilities and hospitals

Author

Monitoring Editor: Ian D Cameron,corresponding author Suzanne M Dyer, Claire E Panagoda, Geoffrey R Murray, Keith D Hill, Robert G Cumming, Ngaire Kerse, and Cochrane Bone, Joint and Muscle Trauma Group

Publish date

2018 Sep;