We Offer Worldwide Shipping
Login Wishlist



  • Brand : BIOFRON

  • Catalogue Number : BD-P0003

  • Specification : 98.0%(HPLC)

  • CAS number : 225110-25-8

  • Formula : C17H24O2

  • Molecular Weight : 260.4

  • PUBCHEM ID : 5281148

  • Volume : 0.1ml

Available on backorder

Checkout Bulk Order?

Catalogue Number


Analysis Method





Molecular Weight




Botanical Source

This product is isolated and purified from the roots of Angelica sinensis

Structure Type








1.0±0.1 g/cm3


Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

184.7±23.3 °C

Boiling Point

408.2±45.0 °C at 760 mmHg

Melting Point


InChl Key


WGK Germany


HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:225110-25-8) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.




Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world’s human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection.


An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells


Pascale S. Guiton,1

Publish date





Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.


Crystal structures of murine carnitine acetyltransferase in ternary complexes with its substrates


Yu-Shan Hsiao, Gerwald Jogl,1 and Liang Tong

Publish date

2010 Sep 16

Description :

Chem Pharm Bull (Tokyo). 1999 Jan;47(1):96-100. Antiproliferative constituents from umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica.[Pubmed: 9987830]METHODS AND RESULTS:The CHCl3 extract of the root of Angelica japonica showed high inhibitory activity against human gastric adenocarcinoma (MK-1) cell growth. From this extract, a new furanocoumarin named japoangelone and four furanocoumarin ethers of Falcarindiol, named japoangelols A-D, were isolated together with caffeic acid methyl ester, four polyacetylenic compounds (panaxynol, Falcarindiol, 8-O-acetylFalcarindiol, and (9Z)-1,9-heptadecadiene-4,6-diyne-3,8,11-triol), eight coumarins (osthol, isoimperatorin, scopoletin, byakangelicin, xanthotoxin, bergapten, oxypeucedanin methanolate, and oxypeucedanin hydrate), and two chromones (3'-O-acetylhamaudol, and hamaudol). CONCLUSIONS:The structures of the new isolates were determined based on spectral evidence. The ED50 of isolates against MK-1, HeLa, and B16F10 cell lines are reported.