We Offer Worldwide Shipping
Login Wishlist



  • Brand : BIOFRON

  • Catalogue Number : BF-G1008

  • Specification : 98%

  • CAS number : 11021-13-9

  • Formula : C53H90O22

  • Molecular Weight : 1079.27

  • PUBCHEM ID : 6917976

  • Volume : 20mg

In stock

Checkout Bulk Order?

Catalogue Number


Analysis Method






Molecular Weight



White crystalline powder

Botanical Source

roots of Panax ginseng C. A. Mey.

Structure Type



Standards;Natural Pytochemical;API




20-((6-O-α-L-Arabinopyranosyl-β-D-glucopyranosyl)oxy)-12β-hydroxydammar-24-en-3β-yl 2-O-β-D-glucopyranosyl-β-D-glucopyranoside/GinsenosideRb2/(2S,3R,4S,5S,6R)-2-{[(2R,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-2-({(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2S,3R,4S,5S)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl]oxy}methyl)tetrahydro-2H-pyran-2-yl]oxy}-5-hepten-2-yl]hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl}oxy)tetrahydro-2H-pyran-3-yl]oxy}-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol/(3β,12β)-20-{[6-O-(α-L-Arabinopyranosyl)-β-D-glucopyranosyl]oxy}-12-hydroxydammar-24-en-3-yl 2-O-β-D-glucopyranosyl-β-D-glucopyranoside/β-D-Glucopyranoside, (3β,12β)-20-[(6-O-α-L-arabinopyranosyl-β-D-glucopyranosyl)oxy]-12-hydroxydammar-24-en-3-yl 2-O-β-D-glucopyranosyl-/GINSENOSIDE RB2/(2S,3R,4S,5S,6R)-2-{[(2R,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-2-({(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2S,3R,4S,5S)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl]oxy}methyl)tetrahydro-2H-pyran-2-yl]oxy}-5-hepten-2-yl]hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl}oxy)tetrahydro-2H-pyran-3-yl]oxy}-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol/(3β,12β)-20-{[6-O-(α-L-Arabinopyranosyl)-β-D-glucopyranosyl]oxy}-12-hydroxydammar-24-en-3-yl-2-O-β-D-glucopyranosyl-β-D-glucopyranoside/ginsenosidec




1.4±0.1 g/cm3


Methanol; DMSO

Flash Point

629.4±34.3 °C

Boiling Point

1117.1±65.0 °C at 760 mmHg

Melting Point



InChl Key

WGK Germany


HS Code Reference


Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:11021-13-9) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate




Treating colorectal cancer (CRC) continues to be a clinical challenge. Studies have shown that epithelial-mesenchymal transition (EMT) is a critical step in tumor progression and transforming growth factor-β1 (TGF-β1) signaling has been shown to play a crucial role in EMT. Here, we investigate the inhibition effect of Ginsenoside Rb2, main bioactive component of ginseng, in human colorectal cancer cells via TGF-β1.

The current study aims to study the inhibitory effect of Ginsenoside Rb2 on HCT116 and SW620 cells and its anti-tumor mechanism.

Histomorphological analysis and western blot analysis were performed to evaluate expression of TGF-β1 in human cancerous colon samples and the adjacent normal samples. The docking simulation assay were performed to explore the potential mode of binding of Ginsenoside Rb2 to the TGF-β1 protein. CCK8, adhesion and invasion assay were used to assess the effects of Ginsenoside Rb2 in HCT116 and SW620 cells. RT-PCR, Western blot and Immunohistochemical staining were employed to detect the TGF-β1-related signaling pathways in the colon cancer cells and/or xenograft mice.

The expression of TGF-β1 in human cancerous colon samples was significantly increased compared with the adjacent normal samples. Ginsenoside Rb2 inhibit the growth, adhesion, EMT and metastasis of human colorectal cancer cells. The docking simulation assay confirmed that Ginsenoside Rb2 bound to the hydrophobic pocket of TGF-β1, which partially overlaps with the binding sites on TGF-β1, and thus disrupted TGF-β1 dimerization. Western Blot analysis further confirmed that Ginsenoside Rb2 could inhibit the expression of TGF-β1 in vitro and in vivo. Furthermore, Ginsenoside Rb2 could inhibit the expression of Smad4 and phosphorylated Smad2/3.

Ginsenoside Rb2 could inhibit EMT of colorectal cancer cells through the TGF-β1/Smad signaling, and might be a potential candidate for the treatment of colorectal cancer.

Copyright © 2018 Elsevier GmbH. All rights reserved.


ANOVA; CCK-8; CRC; Cell Counting Kit-8; Colorectal cancer; EMT; Epithelial-mesenchymal transition; Ginsenoside Rb2; HE; HTVS; SP; TGF-β1; colorectal cancer; epithelial-mesenchymal transition; hematoxylin and eosin; high throughput virtual screening; one-way analysis of variance; standard precision; transforming growth factor-β1


Ginsenoside Rb2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β/Smad signaling.


Dai G1, Sun B2, Gong T3, Pan Z4, Meng Q4, Ju W5.

Publish date

2019 Mar 15




Ginsenoside Rb2, a saponin from Panax ginseng, has been shown to have many functions. However, the effect of ginsenoside Rb2 on the metastasis of colorectal cancer (CRC) remains unknown. CRC cell lines HT29 and SW620 were used to determine the effects of ginsenoside Rb2 on the colony-forming, migration, invasion, and wound-healing abilities of CRC cells in vitro. Further, ginsenoside Rb2 was given intraperitoneally at 5 mg/kg of mouse body weight to check its effect on the metastasis of CRC cells in vivo. Ginsenoside Rb2 decreased colony-forming ability, migration, invasion, and wound healing of CRC cells in vitro, although it did not affect cell proliferation. As a possible mechanism, we found that ginsenoside Rb2 down-regulated the expression of stemness and Epithelial-mesenchymal transition (EMT)-related genes via the EGFR/SOX2 signaling axis; these were partially rescued by either exogenous EGF treatment or ectopic expression of SOX2. More importantly, ginsenoside Rb2 significantly reduced the number of metastatic nodules in the livers, lungs, and kidneys in a mouse model of metastasis. These results suggest that ginsenoside Rb2 could be used to treat the metastasis of CRC therapeutically or as a supplement.

© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.


EGFR; EMT; colorectal cancer; ginsenoside Rb2; metastasis


The anti-metastatic effect of ginsenoside Rb2 in colorectal cancer in an EGFR/SOX2-dependent manner.


Phi LTH1, Wijaya YT1, Sari IN1, Yang YG1, Lee YK1, Kwon HY1.

Publish date

2018 Nov




Qiliqiangxin capsule (QLQX), composed of 11 herbs, is an effective traditional Chinese medicine (TCM) that has been widely used for treatment of chronic heart failure (CHF) in China. In the Chinese pharmacopoeia (Ch.P.) only astragaloside was described as the marker component to control the quality of QLQX, which could not reflect the overall effectiveness.

The aim of this work was to investigate the quality markers (Q-markers) of QLQX based on the association of the pharmacodynamics (PD) of inhibitory effect on activated renin-angiotensin-aldosterone system (RAAS) and the pharmacokinetics (PK) of bioactive compounds according to the Q-marker theory.

The contents of astragaloside, calycosin-7-glucoside, sinapine, ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rg1, salvianolic acid A, salvianolic acid B, danshensu, rosmarinic acid, formononetin, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypacoitine were determined by an HPLC-MS/MS method both in QLQX preparation and in the plasma of CHF rats administered intragastrically with QLQX. The effect of lowering angiotensin II (Ang II) production by QLQX was assayed by ELISA. The association between PK and PD was explored and the bioactive compounds with higher content in vitro and better exposure in vivo, which were closely related to the inhibitory effect on the activated RAAS, were identified as Q-markers of QLQX for CHF treatment.

The contents of 17 constituents were in the order of salvianolic acid B > danshensu > ginsenoside Rb1 > sinapine > benzoylmesaconine > astragaloside > benzoylhypacoitine > ginsenoside Rb2 > salvianolic acid A > ginsenoside Rg1 > calycosin-7-glucoside > rosmarinic acid > formononetin > benzoylaconine > hypaconitine > aconitine > mesaconitine in QLQX preparation. PK and PD association study of 14 bioactive compounds of QLQX showed the maximum effect (Emax) of astragaloside, calycosin-7-glucoside, sinapine and ginsenoside Rg1 and their peak concentration (Cmax) appeared at the same time; while the time of Emax of ginsenoside Rb1, ginsenoside Rb2, salvianolic acid A, salvianolic acid B, danshensu, rosmarinic acid, formononetin, benzoylaconine, benzoylmesaconine and benzoylhypacoitine was delayed from the time of their Cmax.

Astragaloside, calycosin-7-glucoside, sinapine and ginsenoside Rg1 are suitable as the Q-markers of QLQX for CHF treatment, which have higher content in vitro, finer exposure in vivo and a direct correlation with the inhibitory effect on activated RAAS.

Copyright © 2018 Elsevier GmbH. All rights reserved.


Angiotensin II; Chronic heart failure; Pharmacodynamics; Pharmacokinetics; Q-markers; Qiliqiangxin capsule


Research on Q-markers of Qiliqiangxin capsule for chronic heart failure treatment based on pharmacokinetics and pharmacodynamics association.


Zhang F1, Zhang Y2, Li X2, Zhang S3, Zhu M3, Du W4, Xiao X5.

Publish date

2018 May 15

Description :

Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression.