Shipping to United States We Offer Worldwide Shipping
Login Wishlist

Hypaconitine

$225

  • Brand : BIOFRON

  • Catalogue Number : BF-H1006

  • Specification : 98%

  • CAS number : 6900-87-4

  • Formula : C33H45NO10

  • Molecular Weight : 615.71

  • PUBCHEM ID : 441737

  • Volume : 20mg

In stock

Quantity
Checkout Bulk Order?

Catalogue Number

BF-H1006

Analysis Method

HPLC,NMR,MS

Specification

98%

Storage

2-8°C

Molecular Weight

615.71

Appearance

White powder

Botanical Source

Alkaloid from Aconitum senanense, Aconitum carmichaeli, Aconitum koreanum, Aconitum bullatifolium var. homotrichum, Aconitum callianthum, Aconitum ibukiense, Aconitum tortuosum, Aconitum hakusanense and many other Aconitum spp. (Ranunculaceae)

Structure Type

Alkaloids

Category

SMILES

CC(=O)OC12C3C(CC(C3OC(=O)C4=CC=CC=C4)(C(C1O)OC)O)C56C(CCC7(C5C(C2C6[NH+](C7)C)OC)COC)OC.[Br-]

Synonyms

IUPAC Name

[(1S,2R,3R,4R,5R,6S,7S,8R,9R,13S,16S,17R,18R)-8-acetyloxy-5,7-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-4-yl] benzoate

Applications

Density

1.4±0.1 g/cm3

Solubility

DMSO : 50 mg/mL (81.21 mM; Need ultrasonic)
H2O : < 0.1 mg/mL (insoluble)

Flash Point

359.8±31.5 °C

Boiling Point

671.3±55.0 °C at 760 mmHg

Melting Point

InChl

InChl Key

WGK Germany

RID/ADR

HS Code Reference

2939999000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:6900-87-4) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

PMID

31911401

Abstract

Background: Therapeutic applications of Fuzi (lateral root of Aconitum carmichaeli Debx) are seriously concerned with its toxic effects. Strategies and approaches to reducing toxicity are of great interest.

Purpose: We aimed to characterize the diurnal rhythm of Fuzi toxicity, and to determine the role of metabolism and pharmacokinetics in generating toxicity rhythmicity.

Methods: Toxicity was determined based on assessment of heart injury and animal survival after dosing mice with Fuzi decoction at different circadian time points. Circadian clock control of pharmacokinetics and toxicity was investigated using Bmal1-deficient (Bmal1-/-) mice.

Results: Fuzi exhibited a diurnal rhythmicity in cardiotoxicity (reflected by plasma CK-MB and LDH levels). The highest level of toxicity was observed at ZT10 (5 PM), while the lowest level of toxicity occurred at ZT22 (5 AM). Also, a higher mortality rate was observed at ZT10 and lower mortality rates at other times of the day. ZT10 dosing of Fuzi generated higher systemic exposures of three toxic alkaloid ingredients aconitine (AC), hypaconitine (HA) and mesaconitine (MA) compared to ZT22. This was accompanied by reduced the formation of the metabolites (N-deethyl-AC, didemethyl-HA and 2?hydroxyl?MA) at ZT10. Bmal1 ablation resulted in an increased level of Fuzi toxicity at ZT22, while having no influences when drug was dosed at ZT10. As a consequence, circadian time-dependent toxicity of Fuzi was lost in Bmal1-deficient mice. In addition, Bmal1 ablation increased the plasma concentrations of AC, HA and MA in mice after oral gavage of Fuzi, and reduced formation of their metabolites (N-deethyl-AC, didemethyl-HA and 2?hydroxyl?MA). Moreover, Fuzi metabolism in wild-type liver microsomes was more extensive at ZT22 than at ZT10. Bmal1 ablation abrogated circadian time-dependency of hepatic Fuzi metabolism.

Conclusions: Fuzi chronotoxicity in mice was attributed to time-varying hepatic metabolism and systemic exposure regulated by circadian clock. The findings may have implications in reducing Fuzi toxicity with a chronotherapeutic approach

Title

Aconitine; Chronotherapeutics; Chronotoxicity; Circadian clock; Fuzi.

Author

Zemin Yang 1, Yanke Lin 1, Lu Gao 1, Ziyue Zhou 1, Shuai Wang 1, Dong Dong 2, Baojian Wu 3

Publish date

2020 Feb;

PMID

31150629

Abstract

Hypaconitine is an active and highly toxic constituent derived from Aconitum species. Here we aimed to determine the chronotoxicity of hypaconitine in mice, and to investigate a potential role of metabolism in hypaconitine chronotoxicity. Cardiac toxicity was assessed by measuring CK (creatine kinase) and LDH (lactate dehydrogenase) levels after hypaconitine administration to wild-type and Bmal1-/- (a clock disrupted model) mice at different times of day. The mRNA and protein levels of Cyp3a11 in mouse livers were determined by qPCR and western blotting, respectively. In vitro metabolism was assessed using liver microsomes. Pharmacokinetic study of hypaconitine was performed with wild-type mice. We observed injection time-dependent toxicity (i.e., a more severe toxicity during the light phase than the dark phase) for hypaconitine in mice. The chronotoxicity was attributed to a difference in systemic exposure of hypaconitine caused by time of day-dependent metabolism. Furthermore, circadian metabolism of hypaconitine was accounted for by the diurnal expression of Cyp3a11, a major enzyme for hypaconitine detoxification in the liver. Moreover, Bmal1 ablation in mice abolished the daily rhythm of Cyp3a11 expression and abrogated the time-dependency of hypaconitine toxicity. In conclusion, circadian Cyp3a11 metabolism contributed to chronotoxicity of hypaconitine in mice. This metabolism-based chronotoxicity would facilitate the formulation of best timing for drug administration.

KEYWORDS

Chronotoxicity; Circadian clock; Cyp3a11; Hypaconitine; Metabolism.

Title

Circadian Cyp3a11 metabolism contributes to chronotoxicity of hypaconitine in mice

Author

Yanke Lin 1, Ziyue Zhou 1, Zemin Yang 1, Lu Gao 1, Shuai Wang 1, Pei Yu 2, Baojian Wu 3

Publish date

2019 Aug 1;

PMID

30987713

Abstract

Methodology/Principal Findings

KEYWORDS

Electrospray laser desorption ionization mass spectrometry; Emergency management; Herbal toxins; Point-of-care.

Title

Rapid identification of herbal toxins using electrospray laser desorption ionization mass spectrometry for emergency care

Author

Hung Su 1, Kuan-Ting Liu 2, Bai-Hsiun Chen 3, Yen-Ping Lin 1, Yu-Min Jiang 1, Yi-Hong Tsai 4, Fang-Rong Chang 5, Jentaie Shiea 6, Chi-Wei Lee 7

Publish date

2019 Apr