We Offer Worldwide Shipping
Login Wishlist

Isorhamnetin 3-glucoside-7-rhamnoside

$1,120

  • Brand : BIOFRON

  • Catalogue Number : BD-P0754

  • Specification : 98.5%(HPLC&TLC)

  • CAS number : 17331-71-4

  • Formula : C28H32O16

  • Molecular Weight : 624.54

  • PUBCHEM ID : 72188972

  • Volume : 25mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0754

Analysis Method

HPLC,NMR,MS

Specification

98.5%(HPLC&TLC)

Storage

2-8°C

Molecular Weight

624.54

Appearance

Yellow powder

Botanical Source

Structure Type

Flavonoids

Category

SMILES

CC1C(C(C(C(O1)OC2=CC(=C3C(=C2)OC(=C(C3=O)OC4C(C(C(C(O4)CO)O)O)O)C5=CC(=C(C=C5)O)OC)O)O)O)O

Synonyms

5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxychromen-4-one

IUPAC Name

5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxychromen-4-one

Applications

Density

1.0±0.1 g/cm3

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

161.9±18.1 °C

Boiling Point

525.2±30.0 °C at 760 mmHg

Melting Point

InChl

InChI=1S/C28H32O16/c1-9-18(32)21(35)23(37)27(40-9)41-11-6-13(31)17-15(7-11)42-25(10-3-4-12(30)14(5-10)39-2)26(20(17)34)44-28-24(38)22(36)19(33)16(8-29)43-28/h3-7,9,16,18-19,21-24,27-33,35-38H,8H2,1-2H3/t9-,16+,18-,19+,21+,22-,23+,24+,27-,28-/m0/s1

InChl Key

NEJKEXUJCSYMCC-PXBUXKMDSA-N

WGK Germany

RID/ADR

HS Code Reference

2916190000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:17331-71-4) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

19805068

Abstract

Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site.

KEYWORDS

EXAFS, H-cluster, protein film electrochemistry, biological hydrogen production, green algae

Title

How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

Author

Sven T. Stripp,a Gabrielle Goldet,b Caterina Brandmayr,b Oliver Sanganas,c Kylie A. Vincent,b Michael Haumann,c Fraser A. Armstrong,b and Thomas Happea,1

Publish date

2009 Oct 13;

PMID

29229985

Abstract

Autoimmunity appears to play a role in abdominal aortic aneurysm (AAA) pathology. Although the chemokine CCL20 has been involved in autoimmune diseases, its relationship with the pathogenesis of AAA is unclear. We investigated CCL20 expression in AAA and evaluated it as a potential biomarker for AAA. CCL20 was measured in plasma of AAA patients (n = 96), atherosclerotic disease (AD) patients (n = 28) and controls (n = 45). AAA presence was associated with higher plasma levels of CCL20 after adjustments for confounders in the linear regression analysis. Diagnostic performance of plasma CCL20 was assessed by ROC curve analysis, AUC 0.768 (CI:0.678-0.858; p<0.001). Classification and regression tree analysis classified patients into two CCL20 plasma level groups. The high-CCL20 group had a higher number of AAA than the low-CCL20 group (91% vs 54.3%, p< 0.001). mRNA of CCL20 and its receptor CCR6 were higher in AAA (n = 89) than in control aortas (n = 17, p<0.001). A positive correlation was found between both mRNA in controls (R = 0674; p = 0.003), but not in AAA. Immunohistochemistry showed that CCR6 and CCL20 colocalized in the media and endothelial cells. Infiltrating leukocytes immunostained for both proteins but only colocalized in some of them. Our data shows that CCL20 is increased in AAA and circulating CCL20 is a high sensitive biomarker of AAA

Title

Circulating CCL20 as a New Biomarker of Abdominal Aortic Aneurysm

Author

B. Soto,1,2 T. Gallastegi-Mozos,1 C. Rodriguez,3,4 J. Martinez-Gonzalez,4,5 J.-R. Escudero,1,2,4 L. Vila,1,4 and M. Camachocorresponding author1,4

Publish date

2017;

PMID

31758056

Abstract

Drug delivery and therapeutic challenges of gliclazide, a BCS class II drug used in type 2 diabetes mellitus (T2DM) can be overcome by exploring smarter carriers of second-generation nanocrystals (SGNCs). A combined method of emulsion diffusion, high-pressure homogenization and solvent evaporation method were employed in the preparation of gliclazide loaded poly (D, L-lactide-co-glycolide) (PLGA) SGNCs. Taguchi experimental design was adopted in fabrication of Gliclazide SGNc using Gliclazide -PLGA ratio at 1:0.5, 1:0.75, 1:1 with stabilizer (Poloxamer-188, PEG 4000, HPMC E15 at 0.5, 0.75, 1% w/v). The formulated gliclazide of SGNCs were investigated for physicochemical properties, in vitro drug release, and in vivo performance studies using type-2 diabetes rat model. The formulation (SGNCF1) with Drug: PLGA 1: 0.5 ratio with 0.5% w/v Poloxamer-188 produced optimized gliclazide SGNCs. SGNCF1 showed spherical shape, small particle size (106.3 ± 2.69 nm), good zeta potential (−18.2 ± 1.30 mV), small PDI (0.222 ± 0.104) and high entrapment efficiency (86.27 ± 0.222%). The solubility, dissolution rate and bioavailability of gliclazide SGNCs were significantly improved compared to pure gliclazide. The findings emphasize gliclazide SGNCs produce faster release initially, followed by delayed release with improved bioavailability, facilitate efficient delivery of gliclazide in T2DM with better therapeutic effect.

Subject terms: Type 2 diabetes, Drug delivery

Title

Fabrication of Second Generation Smarter PLGA Based Nanocrystal Carriers for Improvement of Drug Delivery and Therapeutic Efficacy of Gliclazide in Type-2 Diabetes Rat Model

Author

Bibhu Prasad Panda,corresponding author1 Rachna Krishnamoorthy,1 Subrat Kumar Bhattamisra,corresponding author2 Naveen Kumar Hawala Shivashekaregowda,3 Low Bin Seng,4 and Sujata Patnaik5

Publish date

2019;