We Offer Worldwide Shipping
Login Wishlist

Kaempferol-3-O-(2″-O-β-D- glucopyl)-β-D-rutinoside


Catalogue Number : BD-P0251
Specification : 98.0%(HPLC)
CAS number : 55696-58-7
Formula : C33H40O20
Molecular Weight : 756.66
PUBCHEM ID : 21676305
Volume : 25mg

Available on backorder

Checkout Bulk Order?

Catalogue Number


Analysis Method






Molecular Weight




Botanical Source

Structure Type








Flash Point

Boiling Point

Melting Point


InChl Key

WGK Germany


HS Code Reference


Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:55696-58-7) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.




Rituximab, an anti CD20 monoclonal antibody, is widely used in the treatment of B-cell malignancies in adults and increasingly in pediatric patients. By depleting B-cells, rituximab interferes with humoral immunity. This review provides a comprehensive overview of immune reconstitution and infectious complications after rituximab treatment in children and adolescents. Immune reconstitution starts usually after six months with recovery to normal between nine to twelve months. Extended rituximab treatment results in a prolonged recovery of B-cells without an increase of clinically relevant infections. The kinetic of B-cell recovery is influenced by the concomitant chemotherapy and the underlying disease. Intensive B-NHL treatment such as high-dose chemotherapy followed by rituximab bears a risk for prolonged hypogammaglobulinemia. Overall transient alteration of immune reconstitution and infections after rituximab treatment are acceptable for children and adolescent without significant differences compared to adults. However, age related disparities in the kinetic of immune reconstitution and the definitive role of rituximab in the treatment for children and adolescents with B-cell malignancies need to be evaluated in prospective controlled clinical trials.


rituximab, immunreconstitution, infections, children, adolescents


Immunreconstitution and Infectious Complications After Rituximab Treatment in Children and Adolescents: What Do We Know and What Can We Learn from Adults?


Jennifer Worch, Olga Makarova, and Birgit Burkhardt*

Publish date

2015 Mar;




There is a growing focus on improving the quality and value of health care delivery for high-cost patients. Compared to fee-for-service Medicare, less is known about the clinical composition of high-cost Medicare Advantage populations.

To describe a high-cost Medicare Advantage population and identify clinically and operationally significant subgroups of patients.

We used a density-based clustering algorithm to group high-cost patients (top 10% of spending) according to 161 distinct demographic, clinical, and claims-based variables. We then examined rates of utilization, spending, and mortality among subgroups.

Sixty-one thousand five hundred forty-six Medicare Advantage beneficiaries.

Main Measures
Spending, utilization, and mortality.

Key Results
High-cost patients (n = 6154) accounted for 55% of total spending. High-cost patients were more likely to be younger, male, and have higher rates of comorbid illnesses. We identified ten subgroups of high-cost patients: acute exacerbations of chronic disease (mixed); end-stage renal disease (ESRD); recurrent gastrointestinal bleed (GIB); orthopedic trauma (trauma); vascular disease (vascular); surgical infections and other complications (complications); cirrhosis with hepatitis C (liver); ESRD with increased medical and behavioral comorbidity (ESRD+); cancer with high-cost imaging and radiation therapy (oncology); and neurologic disorders (neurologic). The average number of inpatient days ranged from 3.25 (oncology) to 26.09 (trauma). Preventable spending (as a percentage of total spending) ranged from 0.8% (oncology) to 9.5% (complications) and the percentage of spending attributable to prescription medications ranged from 7.9% (trauma and oncology) to 77.0% (liver). The percentage of patients who were persistently high-cost ranged from 11.8% (trauma) to 100.0% (ESRD+). One-year mortality ranged from 0.0% (liver) to 25.8% (ESRD+).

We identified clinically distinct subgroups of patients within a heterogeneous high-cost Medicare Advantage population using cluster analysis. These subgroups, defined by condition-specific profiles and illness trajectories, had markedly different patterns of utilization, spending, and mortality, holding important implications for clinical strategy.

Electronic supplementary material
The online version of this article (10.1007/s11606-018-4759-1) contains supplementary material, which is available to authorized users.


high-cost patients, care management, medicare advantage


Subgroups of High-Cost Medicare Advantage Patients: an Observational Study


Brian W. Powers, MD, MBA,1,2,3,4 Jiali Yan, MS,5 Jingsan Zhu, MS, MBA,6 Kristin A. Linn, PhD,7 Sachin H. Jain, MD, MBA,3 Jennifer L. Kowalski, MS,8 and Amol S. Navathe, MD, PhDcorresponding author6,9

Publish date

2019 Feb;




We describe 22 new species in the genus Hyphantrophaga Townsend, 1892 (Diptera: Tachinidae) from Area de Conservacion Guanacaste (ACG) in north-western Costa Rica. All species were reared from an ongoing inventory of wild-caught caterpillars spanning a variety of families (Lepidoptera: Bombycidae, Crambidae, Depressariidae, Doidae, Erebidae, Euteliidae, Gelechiidae, Geometridae, Hedylidae, Hesperiidae, Immidae, Lasiocampidae, Limacodidae, Megalopygidae, Mimaloniidae, Noctuidae, Nolidae, Notodontidae, Nymphalidae, Papilionidae, Pieridae, Phiditiidae, Pterophoridae, Pyralidae, Riodinidae, Saturniidae, Sphingidae, Thyrididae, Tortricidae and Zygaenidae). We provide a morphological description of each species together with information on life history, molecular data and photographic documentation. In addition to the new species, we provide a redescription of the genus, as well as the redescription of three previously described species, which were also collected within ACG during this study: Hyphantrophaga angustata (van der Wulp), Hyphantrophaga myersi (Aldrich) and Hyphantrophaga virilis (Aldrich & Webber).

New information
The following 22 new species of Hyphantrophaga are described: Hyphantrophaga adrianguadamuzi Fleming & Wood sp. n., Hyphantrophaga albopilosa Fleming & Wood sp. n., Hyphantrophaga anacordobae Fleming & Wood sp. n., Hyphantrophaga calixtomoragai Fleming & Wood sp. n., Hyphantrophaga calva Fleming & Wood sp. n.., Hyphantrophaga ciriloumanai Fleming & Wood sp. n., Hyphantrophaga danausophaga Fleming & Wood sp. n., Hyphantrophaga diniamartinezae Fleming & Wood sp. n., Hyphantrophaga duniagarciae Fleming & Wood sp. n., Hyphantrophaga edwinapui Fleming & Wood sp. n., Hyphantrophaga eldaarayae Fleming & Wood sp. n., Hyphantrophaga eliethcantillanoe Fleming & Wood sp. n., Hyphantrophaga gilberthampiei Fleming & Wood sp. n., Hyphantrophaga guillermopereirai Fleming & Wood sp. n., Hyphantrophaga hazelcambroneroae Fleming & Wood sp. n., Hyphantrophaga luciariosae Fleming & Wood sp. n., Hyphantrophaga manuelriosi Fleming & Wood sp. n., Hyphantrophaga morphophaga Fleming & Wood sp. n., Hyphantrophaga nigricauda Fleming & Wood sp. n., Hyphantrophaga osvaldoespinozai Fleming & Wood sp. n., Hyphantrophaga pabloumanai Fleming & Wood sp. n. and Hyphantrophaga similis Fleming & Wood sp. n.

The following are proposed by Wood as new synonyms of Hyphantrophaga Townsend, 1892: Brachymasicera Townsend, 1911 syn. n., Ommasicera Townsend, 1911 syn. n., Ophirosturmia Townsend, 1911 syn. n., Patillalia Curran, 1934 syn. n. and Ypophaemyiops Townsend, 1935 syn. n.

The following nine new combinations are proposed as a result of the new synonymies: Hyphantrophaga adamsoni (Thompson, 1963), comb. n., Hyphantrophaga fasciata (Curran, 1934), comb. n., Hyphantrophaga glauca (Giglio-Tos, 1893), comb. n., Hyphantrophaga gowdeyi (Curran, 1926), comb. n., Hyphantrophaga myersi (Aldrich, 1933), comb. n., Hyphantrophaga nigripes (Townsend, 1928), comb. n., Hyphantrophaga optica (Schiner, 1868), comb. n., Hyphantrophaga polita (Townsend, 1911), comb. n., Hyphantrophaga subpolita (Townsend, 1912), comb. n.


caterpillar, tropical, Goniini , parasitoid, fly, rain forest, dry forest, cloud forest, ACG


Twenty-two new species in the genus Hyphantrophaga Townsend (Diptera: Tachinidae) from Area de Conservacion Guanacaste, with a key to the species of Mesoamerica


AJ Fleming,corresponding author1 D. Monty Wood,1 M. Alex Smith,2 Tanya Dapkey,3 Winnie Hallwachs,3 and Daniel Janzen3

Publish date