We Offer Worldwide Shipping
Login Wishlist

Lophanthoidin F


  • Brand : BIOFRON

  • Catalogue Number : BN-O1001

  • Specification : 99%(HPLC)

  • CAS number : 120462-46-6

  • Formula : C24H34O7

  • Molecular Weight : 434.52

  • PUBCHEM ID : 14193979

  • Volume : 5mg

Available on backorder

Checkout Bulk Order?

Catalogue Number


Analysis Method






Molecular Weight



Yellow powder

Botanical Source

This product is isolated and purified from the herbs of Rabdosia lophanthoides

Structure Type



Standards;Natural Pytochemical;API




1,4-Phenanthrenedione, 2-[2-(acetyloxy)-1-methylethyl]-10-ethoxy-4b,5,6,7,8,8a,9,10-octahydro-3,9-dihydroxy-4b,8,8-trimethyl-, (4bS,8aS,9S,10S)-/(6β,7α)-7-Ethoxy-6,12-dihydroxy-11,14-dioxoabieta-8,12-dien-16-yl acetate


2-[(4bS,8aS,9S,10S)-10-ethoxy-1,9-dihydroxy-4b,8,8-trimethyl-3,4-dioxo-5,6,7,8a,9,10-hexahydrophenanthren-2-yl]propyl acetate


1.2±0.1 g/cm3


Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

185.2±23.6 °C

Boiling Point

562.6±50.0 °C at 760 mmHg

Melting Point



InChl Key


WGK Germany


HS Code Reference


Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:120462-46-6) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.




Chronic Obstructive Pulmonary Disease (COPD) is characterised by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratios per standard deviation of the risk score (~6 alleles) (95% confidence interval) 1.24 (1.20-1.27), P=5.05×10-49) and we observed a 3.7 fold difference in COPD risk between highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in development, elastic fibres and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.


Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets


Louise V Wain,1,2 Nick Shrine,1 Maria Soler Artigas,1 A Mesut Erzurumluoglu,1 Boris Noyvert,1 Lara Bossini-Castillo,3 Ma’en Obeidat,4 Amanda P Henry,5 Michael A Portelli,5 Robert J Hall,5 Charlotte K Billington,5 Tracy L Rimington,5 Anthony G Fenech,6 Catherine John,1 Tineka Blake,1 Victoria E Jackson,1 Richard J Allen,1 Bram P Prins,7 Understanding Society Scientific Group,8 Archie Campbell,9,10 David J Porteous,9,10 Marjo-Riitta Jarvelin,11,12,13,14 Matthias Wielscher,11 Alan L James,15,16,17 Jennie Hui,15,18,19,20 Nicholas J Wareham,21 Jing Hua Zhao,21 James F Wilson,22,23 Peter K Joshi,22 Beate Stubbe,24 Rajesh Rawal,25 Holger Schulz,26,27 Medea Imboden,28,29 Nicole M Probst-Hensch,28,29 Stefan Karrasch,26,30 Christian Gieger,25 Ian J Deary,31,32 Sarah E Harris,9,31 Jonathan Marten,23 Igor Rudan,22 Stefan Enroth,33 Ulf Gyllensten,33 Shona M Kerr,23 Ozren Polasek,22,34 Mika Kahonen,35 Ida Surakka,36,37 Veronique Vitart,23 Caroline Hayward,23 Terho Lehtimaki,38,39 Olli T Raitakari,40,41 David M Evans,42,43 A John Henderson,44 Craig E Pennell,45 Carol A Wang,45 Peter D Sly,46 Emily S Wan,47,48 Robert Busch,47,48 Brian D Hobbs,47,48 Augusto A Litonjua,47,48 David W Sparrow,49,50 Amund Gulsvik,51 Per S Bakke,51 James D Crapo,52,53 Terri H Beaty,54 Nadia N Hansel,55 Rasika A Mathias,56 Ingo Ruczinski,57 Kathleen C Barnes,58 Yohan Bosse,59,60 Philippe Joubert,60,61 Maarten van den Berge,62 Corry-Anke Brandsma,63 Peter D Pare,4,64 Don D Sin,4,64 David C Nickle,65 Ke Hao,66 Omri Gottesman,67 Frederick E Dewey,67 Shannon E Bruse,67 David J Carey,68 H Lester Kirchner,68 Geisinger-Regeneron DiscovEHR Collaboration,8 Stefan Jonsson,69 Gudmar Thorleifsson,69 Ingileif Jonsdottir,69,70 Thorarinn Gislason,70,71 Kari Stefansson,69,70 Claudia Schurmann,72,73 Girish Nadkarni,72 Erwin P Bottinger,72 Ruth JF Loos,72,73,74 Robin G Walters,75 Zhengming Chen,75 Iona Y Millwood,75,76 Julien Vaucher,75 Om P Kurmi,75 Liming Li,77,78 Anna L Hansell,79,80 Chris Brightling,2,81 Eleftheria Zeggini,7 Michael H Cho,47,48 Edwin K Silverman,47,48 Ian Sayers,5 Gosia Trynka,3 Andrew P Morris,82 David P Strachan,83 Ian P Hall,5 and Martin D Tobin1,2

Publish date

2017 Aug 6.




Early life experience profoundly impacts behavior and cognitive functions in rats. The present study investigated how the presence of conspecifics and/or novel objects, could independently influence individual differences in impulsivity and behavioral flexibility. Twenty-four rats were reared in an isolated condition, an isolated condition with a novel object, a pair-housed social condition, or a pair-housed social condition with a novel object. The rats were then tested on an impulsive choice task, a behavioral flexibility task, and an impulsive action task. Novelty enrichment produced an overall increase in impulsive choice, while social enrichment decreased impulsive choice in the absence of novelty enrichment and also produced an overall increase in impulsive action. In the behavioral flexibility task, social enrichment increased regressive errors, whereas both social and novelty enrichment reduced never reinforced errors. Individual differences analyses indicated a significant relationship between performance in the behavioral flexibility and impulsive action tasks, which may reflect a common psychological correlate of action inhibition. Moreover, there was a relationship between delay sensitivity in the impulsive choice task and performance on the DRL and behavioral flexibility tasks, suggesting a dual role for timing and inhibitory processes in driving the interrelationship between these tasks. Overall, these results indicate that social and novelty enrichment produce distinct effects on impulsivity and adaptability, suggesting the need to parse out the different elements of enrichment in future studies. Further research is warranted to better understand how individual differences in sensitivity to enrichment affect individuals’ interactions with and the resulting consequences of the rearing environment.


Impulsive choice, behavioral flexibility, impulsive action, differential rearing, individual differences, rats


Differential effects of social and novelty enrichment on individual differences in impulsivity and behavioral flexibility


Maya Zhe Wang,1,2 Andrew T. Marshall,1,3 and Kimberly Kirkpatrick1

Publish date

2018 Jun 1.

Description :

Empty ...