We Offer Worldwide Shipping
Login Wishlist



  • Brand : BIOFRON

  • Catalogue Number : BN-O1447

  • Specification : 98%(HPLC)

  • CAS number : 10285-07-1

  • Formula : C15H25NO5

  • Molecular Weight : 299.37

  • PUBCHEM ID : 107938

  • Volume : 0.5mg

Available on backorder

Checkout Bulk Order?

Catalogue Number


Analysis Method





Molecular Weight




Botanical Source

Structure Type





retronecine-O(9)-(-)-viridifloryl ester/Retinol,3,4-didehydro-,hexadecanoate/3-Dehydroretinyl palmitate/3,4-Didehydroretinol hexadecanoate/Retinylpalmitat/3-Dehydroretinol palmitate/(+)-Lycopsamine/dehydroretinyl palmitate





Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point


Boiling Point

463.3ºC at 760mmHg

Melting Point


InChl Key


WGK Germany


HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:10285-07-1) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.




The primary goal of cattle genomics is the identification of genome-wide polymorphism associated with economically important traits. The bovine genome sequencing project was completed in 2009. Since then, using massively parallel sequencing technologies, a large number of Bos taurus cattle breeds have been resequenced and scanned for genome-wide polymorphisms. As a result, a substantial number of single nucleotide polymorphisms (SNPs) have been discovered across European Bos taurus genomes, whereas extremely less number of SNPs are cataloged for Bos indicus breeds. In this study, we performed whole-genome resequencing, reference-based mapping, functional annotation and gene enrichment analysis of 20 sires representing eleven important Bos indicus (indicine) breeds of Pakistan. The breeds sequenced here include: Sahiwal, Red Sindhi, Tharparkar and Cholistani (tropically adapted dairy and dual purpose breeds), Achai, Bhagnari, Dajal and Lohani (high altitude adapted dual and drought purpose breeds); Dhanni, Hisar Haryana and Gabrali (dairy and light drought purpose breeds). A total of 17.4 billion QC passed reads were produced using BGISEQ-500 next generation sequencing platform to generate 9 to 27-fold genome coverage (average ~16×) for each of the 20 sequenced sires. A total of 67,303,469 SNPs were identified, of which 3,850,365 were found novel and 1,083,842 insertions-deletions (InDels) were detected across the whole sequenced genomes (491,247 novel). Comparative analysis using coding region SNPs revealed a close relationship between the best milking indicine breeds; Red Sindhi and Sahiwal. On the other hand, Bhagnari and Tharparkar being popular for their adaptation to dry and extremely hot climates were found to share the highest number of SNPs. Functional annotation identified a total of 3,194 high-impact (disruptive) SNPs and 745 disruptive InDels (in 275 genes) that may possibly affect economically important dairy and beef traits. Functional enrichment analysis was performed and revealed that high or moderate impact variants in wingless-related integration site (Wnt) and vascular smooth muscle contraction (VSMC) signaling pathways were significantly over-represented in tropically adapted heat tolerant Pakistani-indicine breeds. On the other hand, vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) signaling pathways were found over-represented in highland adapted Pakistani-indicine breeds. Similarly, the ECM-receptor interaction and Jak-STAT signaling pathway were significantly enriched in dairy and beef purpose Pakistani-indicine cattle breeds. The Toll-like receptor signaling pathway was significantly enriched in most of the Pakistani-indicine cattle. Therefore, this study provides baseline data for further research to investigate the molecular mechanisms of major traits and to develop potential genomic markers associated with economically important breeding traits, particularly in indicine cattle.


Genomic variants identified from whole-genome resequencing of indicine cattle breeds from Pakistan.


Iqbal N1,2,3,4, Liu X2, Yang T2, Huang Z2, Hanif Q1,3, Asif M1,3, Khan QM1, Mansoor S1.

Publish date

2019 Apr 11




BACKGROUND Spinal cord injury (SCI) is an injury-triggered event that is associated with permanent neurologic deficit. The deficit instigated by SCI leads to medical co-morbidity, not only affecting sensory and motor capabilities, but also having an impact on the physiological and economic condition of the patient. Against this backdrop, the present study was carried out to investigate the effect of lycopsamine, a plant-derived alkaloid in SCI rats. MATERIAL AND METHODS The traumatic SCI injury in rats was created using a force-calibrated weight-drop device. The Basso-Beattie-Bresnahan (BBB) locomotor rating scale was used to investigate the functional consequences of SCI. DAPI (4′,6-diamidino-2-phenylindole) and Tunnel staining were used to detect apoptosis. Western blot and qRT-PCR was used to examine the protein and gene expressions, respectively. RESULTS The results revealed that lycopsamine significantly (p<0.01) improved locomotory function in SCI rats. Lycopsamine also significantly (p<0.01) decreased the lesion area of the SCI rats. Investigation of the effect of lycopsamine on cell death following SCI revealed that lycopsamine reduces apoptotic cell death following SCI. The lycopsamine-induced reduction in apoptosis was allied with downregulation of calpain, cleaved caspase 3 and 9, and Bax. However, the expression of BCl-2 was significantly upregulated. Furthermore, lycopsamine significantly (p<0.01) upregulated the expression of interleukin-10 (IL-10) and decreased the expression of tumor necrosis factor-α (TNF-α). CONCLUSIONS Lycopsamine exerts protective effects in PCI rats by improving functional recovery and suppressing apoptosis.


Lycopsamine Exerts Protective Effects and Improves Functional Outcome After Spinal Cord Injury in Rats by Suppressing Cell Death.


Jin J1, Li H2, Zhao G1, Jiang S1.

Publish date

2018 Oct 18;




Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.


cattle; heifer; hypothalamus; neuropeptide; neuropeptidome; peptide processing; pituitary gland; puberty; transcript; transcriptome


Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty.


DeAtley KL, Colgrave ML, Canovas A, Wijffels G, Ashley RL, Silver GA, Rincon G, Medrano JF, Islas-Trejo A, Fortes MRS, Reverter A, Porto-Neto L, Lehnert SA, Thomas MG.

Publish date

2018 May 4

Description :

Empty ...