Shipping to United States We Offer Worldwide Shipping
Login Wishlist

Mangostin, α-

$68

  • Brand : BIOFRON

  • Catalogue Number : BD-P0109

  • Specification : 98.0%(HPLC)

  • CAS number : 6147-11-1

  • Formula : C24H26O6

  • Molecular Weight : 410.5

  • PUBCHEM ID : 5281650

  • Volume : 25mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0109

Analysis Method

Specification

98.0%(HPLC)

Storage

-20℃

Molecular Weight

410.5

Appearance

Yellow powder

Botanical Source

This product is isolated and purified from the fruits of Garcinia mangostana

Structure Type

Category

SMILES

CC(=CCC1=C(C2=C(C=C1O)OC3=C(C2=O)C(=C(C(=C3)O)OC)CC=C(C)C)O)C

Synonyms

1,3,6-Trihydroxy-7-methoxy-2,8-di(3-methyl-2-butenyl)xanthone/Mangostin/1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-enyl)xanthen-9-one/alpha-mangostin/a-Mangostin/1,3,6-Trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one/9H-Xanthen-9-one, 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-buten-1-yl)-/1,3,6-Trihydroxy-7-methoxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one/1,3,6-Trihydroxy-7-methoxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one9H-Xanthen-9-one, 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-/1,3,6-Trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one

IUPAC Name

Applications

ROS scavenging capacity and neuroprotective effect of alpha-mangostin against 3-nitropropionic acid in cerebellar granule neurons.[Pubmed: 19108999 ]Exp Toxicol Pathol. 2009 Sep;61(5):491-501. alpha-Mangostin is a xanthone with antioxidant properties isolated from mangosteen fruit. The reactive oxygen species (ROS) scavenging capacity and the potential protective effect of alpha-Mangostin against the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs) were studied in the present work. It was found that alpha-Mangostin was able to scavenge in a concentration-dependent way singlet oxygen, superoxide anion and peroxynitrite anion. In contrast, alpha-Mangostin was unable to scavenge hydroxyl radicals and hydrogen peroxide. Furthermore, alpha-Mangostin was able to ameliorate in a concentration-dependent way the neuronal death induced by 3-NP. This protective effect was associated with an amelioration of 3-NP-induced reactive oxygen species formation. CONCLUSIONS:It is concluded that alpha-Mangostin is able to scavenge directly several ROS and has a neuroprotective effect against 3-NP in primary cultures of CGNs, which is associated with its ability to ameliorate 3-NP-induced ROS production.

Density

1.3±0.1 g/cm3

Solubility

Methanol

Flash Point

220.3±25.0 °C

Boiling Point

640.1±55.0 °C at 760 mmHg

Melting Point

182ºC

InChl

InChl Key

GNRIZKKCNOBBMO-UHFFFAOYSA-N

WGK Germany

RID/ADR

HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:6147-11-1) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

31438617

Abstract

We load the natural active molecules onto the spin film in an array using electrospinning techniques. The electrospun active molecular membranes we obtain in optimal parameters exhibit excellent capacity for scavenging radical. The reaction capacity of three different membranes for free radicals are shown as follow, glycyrrhizin acid membrane > quercetin membrane > α-mangostin membrane. The prepared active molecular electrospun membranes with a large specific surface area and high porosity could increase the interaction area between active molecules and free radicals. Additionally, it also has improved anti-airflow impact strength, anti-contaminant air molecular interference ability, and the ability to capture free radicals.

KEYWORDS

electrochemistry; electrospun films; free radicals capture; natural active molecules

Title

Preparation of Electrospun Active Molecular Membrane and Atmospheric Free Radicals Capture.

Author

Wang G1, Su Y2, Yu J2, Li R2, Ma S2, Niu X3, Shi G4.

Publish date

2019 Aug 21

PMID

31362245

Abstract

α-Mangostin play crucial role in several cellular progress, including hyperglycemia-induced inhibition of cell growth and promotion of cell apoptosis. Increasing evidence displayed the important roles of lncRNAs and their potential as novel targets for drug development in human disease. However, there is rare study to comprehensively and systematically explore the role and underlying mechanism of lncRNAs in human umbilical vein endothelial cells (HUVECs) under hyperglycemia with or without α-Mangostin. In this study, we firstly found that α-Mangostin reduced the high glucose-induced inhibition of cell proliferation and migration potential of HUVECs. Then, we performed RNA-seq to dissect the expression profiles of lncRNAs in HUVECs treated with high glucose or high glucose supplemented with α-Mangostin. The results showed that the expression of H19 and HE4 was down-regulated by high glucose and further, α-Mangostin restored the high glucose-induced inhibition of H19 and HE4 expression. Further examination demonstrated that the modulation of the H19 and HE4 expression affected the function of α-Mangostin in hyperglycemia. In addition, H19 regulated HE4 expression via the modulation of the miR-140 expression. Finally, we showed that H19 exerted its function via the modulation of H19/miR-140/HE4 in hyperglycemia with α-Mangostin. In summary, this study is the first to comprehensively identify the lncRNAs/mRNAs network in hyperglycemia with or without α-Mangostin, highlighting a novel regulatory pathway in hyperglycemia with or without α-Mangostin and indicating the potential therapeutic role of α-Mangostin in diabetes mellitus.

Copyright © 2019 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

KEYWORDS

Competing endogenous RNA; H19; High glucose; Human umbilical vein endothelial cells; Long non-coding RNAs; α-Mangostin

Title

LncRNA-H19 acts as a ceRNA to regulate HE4 expression by sponging miR-140 in human umbilical vein endothelial cells under hyperglycemia with or without α-Mangostin.

Author

Luo Y1, Fang Z2, Ling Y3, Luo W4.

Publish date

2019 Oct

PMID

31228853

Abstract

Silk fibroin has been utilized extensively for biomedical purposes, especially the drug delivery systems. This study introduced and characterized three novel α-mangostin loaded crosslinked fibroin nanoparticles (FNPs), using EDC or PEI as a crosslinker, for cancer treatment. All three formulas were spherical particles with a mean size of approximately 300 nm. By varying the type and/or amount of the crosslinkers, particle surface charge was controllable from -15 to +30 mV. Crosslinked FNPs exhibited higher drug entrapment efficiency (70%) and drug loading (7%) than non-crosslinked FNP. FT-IR, XRD, and DSC analytical methods confirmed that α-mangostin was entrapped in FNPs in molecular dispersion form. Compared to the free α-mangostin, the crosslinked FNPs increased the drug’s solubility up to threefold. They also showed sustained release characteristics of more than 3 days, and reduced free α-mangostin hematotoxicity by 90%. The α-mangostin loaded FNPs were physicochemically stable for up to 24 h when dispersed in intravenous diluent and for at least 6 months when preserved as lyophilized powder at 4 °C. In terms of anticancer efficacy, on both Caco-2 colorectal and MCF-7 breast adenocarcinoma cell lines, all formulas maintain α-mangostin’s apoptotic effect while exhibit greater cytotoxicity than the free drug. In conclusion, α-mangostin loaded crosslinked FNPs show high potential for cancer chemotherapy.

Copyright © 2019 Elsevier B.V. All rights reserved.

KEYWORDS

Alpha mangostin; Cancer; Controlled release; Crosslinked; Fibroin; Nanoparticles

Title

Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy.

Author

Pham DT1, Saelim N1, Tiyaboonchai W2.

Publish date

2019 Sep 1