We Offer Worldwide Shipping
Login Wishlist

Mulberrofuran G


  • Brand : BIOFRON

  • Catalogue Number : BD-P0306

  • Specification : 95.0%(HPLC)

  • CAS number : 87085-00-5

  • Formula : C34H26O8

  • Molecular Weight : 562.6

  • PUBCHEM ID : 196583

  • Volume : 5mg

Available on backorder

Checkout Bulk Order?

Catalogue Number


Analysis Method





Molecular Weight




Botanical Source

This product is isolated and purified from the root bark of Morus alba L.

Structure Type







1.5±0.1 g/cm3


Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

374.2±31.5 °C

Boiling Point

695.1±55.0 °C at 760 mmHg

Melting Point


InChl Key


WGK Germany


HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:87085-00-5) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.




In this study, we delineate the human monoamine oxidase (hMAO) inhibitory potential of natural Diels-Alder type adducts, mulberrofuran G (1), kuwanon G (2), and albanol B (3), from Morus alba root bark to characterize their role in Parkinson’s disease (PD) and depression, focusing on their ability to modulate dopaminergic receptors (D1R, D2LR, D3R, and D4R). In hMAO-A inhibition, 1-3 showed mild effects (50% inhibitory concentration (IC50): 54‒114 μM). However, 1 displayed moderate inhibition of the hMAO-B isozyme (IC50: 18.14 ± 1.06 μM) followed by mild inhibition by 2 (IC50: 57.71 ± 2.12 μM) and 3 (IC50: 90.59 ± 1.72 μM). Our kinetic study characterized the inhibition mode, and the in silico docking predicted that the moderate inhibitor 1 would have the lowest binding energy. Similarly, cell-based G protein-coupled receptors (GPCR) functional assays in vector-transfected cells expressing dopamine (DA) receptors characterized 1-3 as D1R/D2LR antagonists and D3R/D4R agonists. The half-maximum effective concentration (EC50) of 1-3 on DA D3R/D4R was 15.13/17.19, 20.18/21.05, and 12.63/‒ µM, respectively. Similarly, 1-3 inhibited 50% of the DA response on D1R/D2LR by 6.13/2.41, 16.48/31.22, and 7.16/18.42 µM, respectively. A computational study revealed low binding energy for the test ligands. Interactions with residues Asp110, Val111, Tyr365, and Phe345 at the D3R receptor and Asp115 and His414 at the D4R receptor explain the high agonist effect. Likewise, Asp187 at D1R and Asp114 at D2LR play a crucial role in the antagonist effects of the ligand binding. Our overall results depict 1-3 from M. alba root bark as good inhibitors of hMAO and potent modulators of DA function as D1R/D2LR antagonists and D3R/D4R agonists. These active constituents in M. alba deserve in-depth study for their potential to manage neurodegenerative disorders (NDs), particularly PD and psychosis.


GPCRs; Morus alba L.; Parkinson’s disease; dopamine; human monoamine oxidase.


Novel Diels-Alder Type Adducts from Morus alba Root Bark Targeting Human Monoamine Oxidase and Dopaminergic Receptors for the Management of Neurodegenerative Diseases


Pradeep Paudel 1, Se Eun Park 1, Su Hui Seong 1, Hyun Ah Jung 2, Jae Sue Choi 1

Publish date

2019 Dec 10;




Kuwanon G (KG) and benzofuran flavonoids such as mulberrofuran G (MG) and albanol B (AB) isolated from Morus sp. are reported to exhibit anti-Alzheimer’s disease, anti-inflammatory, fungicidal, anti-cancer, anti-bacterial, and anti-tyrosinase properties. We investigated the inhibition of mono- and diphenolase activity of mushroom tyrosinase by KG, MG, and AB. KG and MG displayed acceptable inhibition activity compared to kojic acid. AB did not show any activity up to 350 µM. MG displayed six-fold higher inhibition of l-tyrosine oxidation (IC50 = 6.35 ± 0.45 µM) compared to kojic acid (IC50 = 36.0 µM). Kinetic studies revealed that KG and MG inhibited monophenolase activity of tyrosinase in a competitive manner. Docking simulations of KG and MG demonstrated favorable binding energies with amino acid residues of the active sites of tyrosinase. Our investigation of the structure-activity relationship of the fused benzofuran flavonoids (MG vs. AB) implicated the methyl cyclohexene ring moiety in tyrosinase inhibition. The enzyme substrate and relative structural analyses demonstrated that KG and MG from Morus sp. could be useful natural tyrosinase inhibitors in foods or cosmetics.


Morus species; albanol B; kuwanon G; mulberrofuran G; mushroom tyrosinase; structure-activity relationship.


Structure⁻Activity Relationship of the Tyrosinase Inhibitors Kuwanon G, Mulberrofuran G, and Albanol B from Morus Species: A Kinetics and Molecular Docking Study


Prashamsa Koirala 1, Su Hui Seong 2, Yajuan Zhou 3, Srijan Shrestha 4, Hyun Ah Jung 5, Jae Sue Choi 6

Publish date

2018 Jun 11;




Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G (1), albanol B (2), and kuwanon G (3) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 1⁻3 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 1⁻3 demonstrated negative binding energies in both enzymes. Moreover, 1⁻3 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 1⁻3 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.


Morus alba L.; insulin-resistant HepG2; molecular docking; protein tyrosine phosphatase 1B; root bark; α-Glucosidase.


Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study


Pradeep Paudel 1, Ting Yu 2, Su Hui Seong 3, Eun Bi Kuk 4, Hyun Ah Jung 5, Jae Sue Choi 6

Publish date

2018 May 22;

Description :

Empty ...