Catalogue Number
BN-O1354
Analysis Method
Specification
98%(HPLC)
Storage
2-8°C
Molecular Weight
811
Appearance
Botanical Source
Structure Type
Category
SMILES
CC1(CCC2(C(C1)C3=CCC4C5(CCC(C(C5CCC4(C3(C(C2=O)O)C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O)OC7C(C(C(C(O7)CO)O)O)O)O)C)C)C
Synonyms
(2S,3S,4S,5R,6R)-6-[[(3S,4R,4aR,6aR,6bS,7R,8aS,12aS,14aR,14bR)-7-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-8-oxo-2,3,4a,5,6,7,9,10,12,12a,14,14a-dodecahydro-1H-picen-3-yl]oxy]-3,5-dihydroxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid
IUPAC Name
(2S,3S,4S,5R,6R)-6-[[(3S,4R,4aR,6aR,6bS,7R,8aS,12aS,14aR,14bR)-7-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-8-oxo-2,3,4a,5,6,7,9,10,12,12a,14,14a-dodecahydro-1H-picen-3-yl]oxy]-3,5-dihydroxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid
Density
Solubility
Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Flash Point
Boiling Point
Melting Point
InChl
InChl Key
QAZTYSZGLJXCHN-PFVMXIPDSA-N
WGK Germany
RID/ADR
HS Code Reference
Personal Projective Equipment
Correct Usage
For Reference Standard and R&D, Not for Human Use Directly.
Meta Tag
provides coniferyl ferulate(CAS#:250613-27-5) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate
No Technical Documents Available For This Product.
31277361
Pomacea canaliculata hemocytes are the main functional cells in the immune defense system, and hemocyte destruction disrupts the immune response mechanism of P. canaliculata, resulting in abnormal growth, development, reproduction, and even death. Our previous study found that Pedunsaponin A significantly affects P. canaliculata hemocyte structure. This study further investigated the damaging effects of Pedunsaponin A on P. canaliculata hemocytes. The cell mortality rate results showed that the hemocyte mortality was significantly increased after treatment with Pedunsaponin A, and the mortality rate exhibited a significant positive correlation with treatment time and dose. The membrane potential results showed that the cell membranes of P. canaliculata hemocytes exhibited time-dependent membrane depolarization after 40 mg/L Pedunsaponin A treatment. At 36 h, the cell depolarization rate in the Pedunsaponin A treatment group was 41.43%, which was significantly greater than the control group (6.24%). The cytoskeleton results showed that Pedunsaponin A led to disordered and dispersed arrangement of microfilaments and changes in the cytoskeletal structure. The apoptosis and cell cycle results showed that Pedunsaponin A induced apoptosis and influenced the cell cycle to some extent. These results showed that the cell membrane and cytoskeleton of P. canaliculata hemocytes were damaged after treatment with Pedunsaponin A, which led to an increase in cell mortality, dysfunction, cell cycle abnormalities and apoptosis. This study provides a foundation for further identification of the site of Pedunsaponin A activity on hemocytes.
Pedunsaponin A; Pomacea canaliculata; apoptosis; cell cycle; cytoskeleton; membrane potential
The Damaging Effects of Pedunsaponin A on Pomacea canaliculata Hemocytes.
Yang C1, Lv T1, Wang B1, Qiu X1, Luo L1, Zhang M1, Yue G2, Qin G1, Xie D1, Chen H3.
2019 Jul 4
29891366
Pedunsaponin A, a novel molluscicidal compound isolated from Pueraria peduncularis, exhibits strong toxicity against Pomacea canaliculata. To determine the mechanisms of Pedunsaponin A toxicity, its effects on the organs and hemocytes of P. canaliculata were examined in this study. The results showed that Pedunsaponin A had significant toxic effects on different organs of the snail, including the lungs, gills, mantle, siphon tube, ventricle, pericardial cavity, hepatopancreas, kidneys, and the major symptom of this toxicity was the loss of cilia in the lungs and gills. Additionally, in further studies on the effects of Pedunsaponin A treatment, we found that the hemocyte count was changed and hemocyte morphology was damaged, which was primarily reflected by cytoplasm leakage, nuclei deformation, and significant reductions in the number of ribosomes and granulocyte mitochondria. Based on these results and considering that blood vessels are distributed in the lungs and gills, we hypothesized that Pedunsaponin A would first destroy the cilia, which disrupt physiological activities such as respiration, excretion and feeding, and then enter the hemolymph through blood vessels, disrupt the normal function of the hemocytes and destroy the snail immune system, eventually resulting in the death of the snail.
Copyright © 2018 Elsevier Inc. All rights reserved.
Cilia; Hemolymph; Histopathological effects; Pedunsaponin A; Pomacea canaliculata; Pueraria peduncularis
Histopathological effects of Pedunsaponin A on Pomacea canaliculata.
Yang C1, Tian Y1, Lv T1, Chang X1, Zhang M1, Gong G1, Zhao L2, Yang S2, Chen H3.
2018 Jun
31698793
Transcriptomes, genomes, and proteomes have played important roles in the search for drug targets. To determine the molluscicidal mechanism of pedunsaponin A against Pomacea canaliculata, RNA-seq technology was adopted to analyze the differentially expressed genes (DEGs) in the P. canaliculata transcriptome after treatment with pedunsaponin A. As a result, 533 DEGs were identified, among which 255 genes were significantly upregulated and 278 genes were significantly downregulated. According to the analysis of Gene Ontology (GO) functions, we found that the DEGs were significantly enriched in the viral life cycle, UDP-glucose 4-epimerase activity, guanylate cyclase activity, the cyclic guanosine monophosphate (cGMP) biosynthetic process, and the cGMP metabolic process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway results showed that the DEGs were mainly involved in the hedgehog signaling pathway, phagosome, cytosolic DNA-sensing pathway, retinoic acid-inducible gene I like (RIG-I-like) receptor signaling pathway, bacterial secretion system, and nuclear factor-kappa B (NF-kappa B) signaling pathway. The above results indicated that pedunsaponin A causes a metabolic disorder, anomalous opening of membrane ion channels, and an imbalance in osmotic pressure between the interior and exterior of cells, eventually resulting in the death of cells involved in immune defense and influencing the immune response of P. canaliculata.
DEGs; Pomacea canaliculata; pedunsaponin A; transcriptome
Study of the Differentially Expressed Genes in the Pomacea canaliculata Transcriptome after Treatment with Pedunsaponin A.
Yang C1, Lv T1, Zhang Y1, Wang B1, Zhao X1, Zhang M1, Gong G1, Chang X1, Yue G2, Qiu X1, Luo L1, Chen H1.
2019 Nov 6
Description :
Empty ...