Shipping to Germany We Offer Worldwide Shipping
Login Wishlist

Peritassine A

$560

  • Brand : BIOFRON

  • Catalogue Number : BD-P0143

  • Specification : 90.0%(HPLC)

  • CAS number : 262601-67-2

  • Formula : C38H47NO18

  • Molecular Weight : 805.783

  • PUBCHEM ID : 76535542

  • Volume : 5mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0143

Analysis Method

HPLC,NMR,MS

Specification

90.0%(HPLC)

Storage

2-8°C

Molecular Weight

805.783

Appearance

Powder

Botanical Source

Structure Type

Piperidines

Category

SMILES

CC1C(C(=O)OC2C(C(C3(C(C(C4C(C3(C2(C)O)OC4(COC(=O)C5=C1C=CN=C5)C)OC(=O)C)OC(=O)C)OC(=O)C)COC(=O)C)OC(=O)C)OC(=O)C)C

Synonyms

IUPAC Name

(18,19,21,22,24-pentaacetyloxy-25-hydroxy-3,13,14,25-tetramethyl-6,15-dioxo-2,5,16-trioxa-9-azapentacyclo[15.7.1.01,20.03,23.07,12]pentacosa-7(12),8,10-trien-20-yl)methyl acetate

Applications

Density

1.40±0.1 g/cm3 (20 ºC 760 Torr)

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

Boiling Point

Melting Point

InChl

InChI=1S/C38H47NO18/c1-16-17(2)33(46)56-30-28(52-20(5)42)32(55-23(8)45)37(15-49-18(3)40)31(54-22(7)44)27(51-19(4)41)26-29(53-21(6)43)38(37,36(30,10)48)57-35(26,9)14-50-34(47)25-13-39-12-11-24(16)25/h11-13,16-17,26-32,48H,14-15H2,1-10H3/t16?,17?,26?,27-,28+,29-,30+,31-,32+,35?,36+,37-,38+/m1/s1

InChl Key

XVCIECFQBMGYAF-MNNNDVGPSA-N

WGK Germany

RID/ADR

HS Code Reference

2933990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:262601-67-2) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

25304043

Abstract

Background
We assessed the contribution of reverse shoulder arthroplasty to overall utilization of primary shoulder arthroplasty, and present age and sex stratified national rates of shoulder arthroplasty. We also assessed contemporary complication rates, mortality, and indications for shoulder arthroplasty, as well as estimates and indications for revision arthroplasty.

Methods
We used the Nationwide Inpatient Samples for 2009-2011 to calculate estimates of shoulder arthroplasty and assessed trends using joinpoint regression.

Results
The cumulative estimated utilization of primary shoulder arthroplasty (total anatomical, hemi, and reverse) increased significantly from 52,397 procedures (95% CI=47,093-57,701) in 2009 to 67,184 cases (95% CI=60,638-73,731) in 2011. Reverse shoulder arthroplasty accounted for 42% of all primary shoulder arthroplasty procedures in 2011. The diagnosis of concomitant diagnosis of osteoarthritis and rotator cuff impairment was found in only 29.8% of reverse shoulder arthroplasty cases. The highest rate of reverse shoulder arthroplasty was in the 75-84 year female sub-group (77; 95% CI=67-87). Revision cases were 8.8% and 8.2% of all shoulder arthroplasties in 2009 and 2011, respectively, and 35% of revision cases were secondary to mechanical complications/loosening while 18% were due to dislocation.

Conclusions
The utilization of primary shoulder arthroplasty significantly increased in just a three year time span, with a major contribution from reverse shoulder arthroplasty in 2011. Indications appear to have expanded as a large percentage of patients did not have rotator cuff pathology. The burden from revision arthroplasties was also substantial and efforts to optimize outcomes and longevity of primary shoulder arthroplasty are needed.

Level of evidence
Epidemiology Study, Database Analysis

KEYWORDS

reverse shoulder arthroplasty, utilization

Title

The Contribution of Reverse Shoulder Arthroplasty to Utilization of Primary Shoulder Arthroplasty

Author

Nitin B. Jain, MD, MSPH1,2 and Ken Yamaguchi, MD, MBA3

Publish date

2015 Dec 1

PMID

28325969

Abstract

The genus Calliscelio Ashmead is presumed to be a diverse group of parasitoids of the eggs of crickets (Orthoptera: Gryllidae). A least one species has been found to be an important factor in depressing cricket pest populations. The New World species of Calliscelio are revised. Forty-two species are recognized, 3 are redescribed: Calliscelio bisulcatus (Kieffer), Calliscelio laticinctus Ashmead, Calliscelio rubriclavus (Ashmead), comb. n.; and 38 are described as new: Calliscelio absconditum Chen & Johnson, sp. n., Calliscelio absum Chen & Johnson, sp. n., Calliscelio alcoa Chen & Masner, sp. n., Calliscelio amadoi Chen & Johnson, sp. n., Calliscelio armila Chen & Masner, sp. n., Calliscelio bidens Chen & Masner, sp. n., Calliscelio brachys Chen & Johnson, sp. n., Calliscelio brevinotaulus Chen & Johnson, sp. n., Calliscelio brevitas Chen & Johnson, sp. n., Calliscelio carinigena Chen & Johnson, sp. n., Calliscelio crater Chen & Johnson, sp. n., Calliscelio crena Chen & Johnson, sp. n., Calliscelio eboris Chen & Johnson, sp. n., Calliscelio extenuatus Chen & Johnson, sp. n., Calliscelio flavicauda Chen & Johnson, sp. n., Calliscelio foveolatus Chen & Johnson, sp. n., Calliscelio gatineau Chen & Johnson, sp. n., Calliscelio glaber Chen & Masner, sp. n., Calliscelio granulatus Chen & Masner, sp. n., Calliscelio latifrons Chen & Johnson, sp. n., Calliscelio levis Chen & Johnson, sp. n., Calliscelio longius Chen & Johnson, sp. n., Calliscelio magnificus Chen & Masner, sp. n., Calliscelio migma Chen & Johnson, sp. n., Calliscelio minutia Chen & Johnson, sp. n., Calliscelio paraglaber Chen & Johnson, sp. n., Calliscelio pararemigio Chen & Masner, sp. n., Calliscelio prolixus Chen & Johnson, sp. n., Calliscelio punctatifrons Chen & Johnson, sp. n., Calliscelio remigio Chen & Masner, sp. n., Calliscelio ruga Chen & Johnson, sp. n., Calliscelio rugicoxa Chen & Masner, sp. n., Calliscelio sfina Chen & Johnson, sp. n., Calliscelio storea Chen & Johnson, sp. n., Calliscelio suni Chen & Johnson, sp. n., Calliscelio telum Chen & Johnson, sp. n., Calliscelio torqueo Chen & Johnson, sp. n., Calliscelio virga Chen & Johnson, sp. n. Four species are treated as junior synonyms of Calliscelio rubriclavus (Ashmead): Anteris nigriceps Ashmead, syn. n., Caloteleia marlattii Ashmead, syn. n., Caloteleia grenadensis Ashmead, syn. n., and Macroteleia ruskini Girault, syn. n.

KEYWORDS

Egg parasitoid, key, revision, Gryllidae

Title

New World species of the genus Calliscelio Ashmead (Hymenoptera, Platygastridae, Scelioninae)

Author

Hua-yan Chen,1 Lubomir Masner,2 and Norman F. Johnson3

Publish date

2017;

PMID

27877167

Abstract

Although bacterial anaerobic degradation of mono-aromatic compounds has been characterized in depth, the degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene has only started to be understood in sulfate reducing bacteria, and little is known about the anaerobic degradation of PAHs in nitrate reducing bacteria. Starting from a series of environments which had suffered different degrees of hydrocarbon pollution, we used most probable number (MPN) enumeration to detect and quantify the presence of bacterial communities able to degrade several PAHs using nitrate as electron acceptor. We detected the presence of a substantial nitrate reducing community able to degrade naphthalene, 2-methylnaphthalene (2MN), and anthracene in some of the sites. With the aim of isolating strains able to degrade PAHs under denitrifying conditions, we set up a series of enrichment cultures with nitrate as terminal electron acceptor and PAHs as the only carbon source and followed the changes in the bacterial communities throughout the process. Results evidenced changes attributable to the imposed nitrate respiration regime, which in several samples were exacerbated in the presence of the PAHs. The presence of naphthalene or 2MN enriched the community in groups of uncultured and poorly characterized organisms, and notably in the Acidobacteria uncultured group iii1-8, which in some cases was only a minor component of the initial samples. Other phylotypes selected by PAHs in these conditions included Bacilli, which were enriched in naphthalene enrichments. Several nitrate reducing strains showing the capacity to grow on PAHs could be isolated on solid media, although the phenotype could not be reproduced in liquid cultures. Analysis of known PAH anaerobic degradation genes in the original samples and enrichment cultures did not reveal the presence of PAH-related nmsA-like sequences but confirmed the presence of bssA-like genes related to anaerobic toluene degradation. Altogether, our results suggest that PAH degradation by nitrate reducing bacteria may require the contribution of different strains, under culture conditions that still need to be defined.

KEYWORDS

anaerobic naphthalene biodegradation, nitrate reducing bacteria, 2-methylnaphthalene, Acidobacteria, iii1-8, PAHs, compost pile

Title

Polycyclic Aromatic Hydrocarbon-Induced Changes in Bacterial Community Structure under Anoxic Nitrate Reducing Conditions

Author

Sophie-Marie Martirani-Von Abercron, Daniel Pacheco, Patricia Benito-Santano,† Patricia Marin, and Silvia Marques*

Publish date

2016;