Catalogue Number
BN-O1840
Analysis Method
Specification
98%(HPLC)
Storage
2-8°C
Molecular Weight
1990.14
Appearance
Botanical Source
Structure Type
Category
SMILES
CCC(C)C(CC(CC(=O)OC(CC(CC(=O)OC1C(OC(C(C1O)OC2C(C(C(C(O2)C)OC3C(C(C(CO3)OC4C(C(CO4)(CO)O)O)O)O)O)O)OC(=O)C56CCC(CC5C7=CCC8C9(CCC(C(C9CCC8(C7(CC6O)C)C)(C)C=O)OC1C(C(C(C(O1)C(=O)O)O)OC1C(C(C(CO1)O)O)O)OC1C(C(C(C(O1)CO)O)O)O)C)(C)C)C)O)C(C)CC)O)OC1C(C(C(O1)CO)O)O
Synonyms
(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8R,8aR,12aS,14aR,14bR)-8a-[(2S,3R,4S,5R,6R)-3-[(2S,3R,4S,5R,6S)-5-[(2S,3R,4R,5R)-5-[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,4-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[5-[5-[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-3-hydroxy-6-methyloctanoyl]oxy-3-hydroxy-6-methyloctanoyl]oxy-4-hydroxy-6-methyloxan-2-yl]oxycarbonyl-4-formyl-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3-hydroxy-5-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxane-2-carboxylic acid
IUPAC Name
Density
Solubility
Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Flash Point
Boiling Point
Melting Point
InChl
InChl Key
WGK Germany
RID/ADR
HS Code Reference
Personal Projective Equipment
Correct Usage
For Reference Standard and R&D, Not for Human Use Directly.
Meta Tag
provides coniferyl ferulate(CAS#:141256-04-4) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate
No Technical Documents Available For This Product.
31833496
We report the design, synthesis, immunological evaluation, and conformational analysis of new saponin variants as promising vaccine adjuvants. These studies have provided expedient synthetic access to streamlined adjuvant-active saponins and yielded molecular-level insights into saponin conformation that correlated with their in vivo adjuvant activities.
Exploiting structure-activity relationships of QS-21 in the design and synthesis of streamlined saponin vaccine adjuvants
Mattia Ghirardello 1, Ane Ruiz-de-Angulo, Nagore Sacristan, Diego Barriales, Jesús Jimenez-Barbero, Ana Poveda, Francisco Corzana, Juan Anguita, Alberto Fernandez-Tejada
2020 Jan 16
31182297
Background: Vaccine adjuvants are compounds that significantly enhance/prolong the immune response to a co-administered antigen. The limitations of the use of aluminium salts that are unable to elicite cell responses against intracellular pathogens such as those causing malaria, tuberculosis, or AIDS, have driven the development of new alternative adjuvants such as QS-21, a triterpene saponin purified from Quillaja saponaria.
Purpose: The aim of this review is to attempt to clarify the mechanism of action of QS-21 through either receptors or signaling pathways in vitro and in vivo with special emphasis on the co-administration with other immunostimulants in new adjuvant formulations, called adjuvant systems (AS). Furthermore, the most relevant clinical applications will be presented.
Methods: A literature search covering the period 2014-2018 was performed using electronic databases from Sci finder, Science direct, Medline/Pubmed, Scopus, Google scholar.
Results: Insights into the mechanism of action of QS-21 can be summarized as follows: 1) in vivo stimulation of Th2 humoral and Th1 cell-mediated immune responses through action on antigen presenting cells (APCs) and T cells, leading to release of Th1 cytokines participating in the elimination of intracellular pathogens. 2) activation of the NLRP3 inflammasome in mouse APCs with subsequent release of caspase-1 dependent cytokines, Il-1β and Il-18, important for Th1 responses. 3) synthesis of nearly 50 QS-21 analogs, allowing structure/activity relationships and mechanistic studies. 4) unique synergy mechanism between monophosphoryl lipid A (MPL A) and QS-21, formulated in a liposome (AS01) in the early IFN-γ response, promoting vaccine immunogenicity. The second part of the review is related to phase I-III clinical trials of QS-21, mostly formulated in ASs, to evaluate efficacy, immunogenicity and safety of adjuvanted prophylactic vaccines against infectious diseases, e.g. malaria, herpes zoster, tuberculosis, AIDS and therapeutic vaccines against cancer and Alzheimer’s disease.
Conclusion: The most advanced phase III clinical applications led to the development of two vaccines containing QS-21 as part of the AS, the Herpes Zoster vaccine (HZ/su) (Shingrix™) which received a license in 2017 from the FDA and a marketing authorization in the EU in 2018 and the RTS,S/AS01 vaccine (Mosquirix™) against malaria, which was approved by the EMA in 2015 for further implementation in Sub-Saharan countries for routine use.
Cancer; Herpes zoster; Malaria; QS-21; Quillaja saponaria; Vaccine adjuvant.
Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review
Marie-Aleth Lacaille-Dubois 1
2019 Jul;
31043512
Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21
Amritha Ramakrishnan 1, Nina M Schumack 2 3, Christina L Gariepy 2 3, Heather Eggleston 2 3, Gladys Nunez 1, Nereyda Espinoza 1, Monica Nieto 1, Rosa Castillo 1, Jesus Rojas 1, Andrea J McCoy 1, Zoltan Beck 4, Gary R Matyas 5, Carl R Alving 5, Patricia Guerry 3, Frederic Poly 3, Renee M Laird 6 3
2019 May 1;
Description :
Empty ...