We Offer Worldwide Shipping
Login Wishlist

Simvastatin

$96

  • Brand : BIOFRON

  • Catalogue Number : BN-O1298

  • Specification : 98%(HPLC)

  • CAS number : 79902-63-9

  • Formula : C25H38O5

  • Molecular Weight : 418.57

  • PUBCHEM ID : 54454

  • Volume : 20mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BN-O1298

Analysis Method

Specification

98%(HPLC)

Storage

-20℃

Molecular Weight

418.57

Appearance

Cryst.

Botanical Source

This product is isolated and purified from the Penicillium Citrinum

Structure Type

Category

SMILES

CCC(C)(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC3CC(CC(=O)O3)O)C

Synonyms

2,2-Dimethylbutanoic acid (1S,3R,7S,8S,8aR)-1,2,3,7,8,8a-hexahydro-3,7-dimethyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthalenyl ester/Lipex/2,2-Dimethylbutyric Acid 8-Ester with (4R,6R)-6-[2-[(1S,2S,6R,8S,8aR)-1,2,6,7,8,8a-Hexahydro-8-hydroxy-2,6-dimethyl-1-naphthyl]ethyl]tetrahydro-4-hydroxy-2H-pyran-2-one/Velostatin/(1S,3R,7S,8S,8aR)-8-{2-[(2R,4R)-4-Hydroxy-6-oxotetrahydro-2H-pyran-2-yl]ethyl}-3,7-dimethyl-1,2,3,7,8,8a-hexahydro-1-naphthalenyl 2,2-dimethylbutanoate/ZOCOR/(1S,3R,7S,8S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-oxotetrahydro-2H-pyran-2-yl]ethyl}-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl 2,2-dimethylbutanoate/Simvotin/Corolin/Cholestat/Butanoic acid, 2,2-dimethyl-, (1S,3R,7S,8S,8aR)-1,2,3,7,8,8a-hexahydro-3,7-dimethyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthalenyl ester/Colemin/Coledis/Simvastatin/Kolestevan/Lipovas/Nor-Vastina/Zocord/Liponorm/Lipinorm/Modutrol/[1S-[1a,3a,7b,8b(2S*,4S*),8ab]]-2,2-Dimethylbutanoic Acid1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl Ester/Eucor/simcor/Denan/simvasterol/Rechol/Valemia/Sivastin

IUPAC Name

Density

1.1±0.1 g/cm3

Solubility

Flash Point

184.8±23.6 °C

Boiling Point

564.9±50.0 °C at 760 mmHg

Melting Point

139 °C

InChl

InChl Key

RYMZZMVNJRMUDD-HGQWONQESA-N

WGK Germany

RID/ADR

HS Code Reference

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:79902-63-9) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

29138670

Abstract

Simvastatin is a lipid-lowering agent used to treat hypercholesterolemia and to reduce the risk of heart disease. This study scrutinized the beneficial effects of simvastatin on experimental diabetic cardiomyopathy (DCM), pointing to the role of hyperglycemia-induced oxidative stress and inflammation. Diabetes was induced by intraperitoneal injection of streptozotocin and both control and diabetic rats received simvastatin for 90 days. Diabetic rats showed significant cardiac hypertrophy, body weight loss, hyperglycemia, and hyperlipidemia. Serum creatine kinase MB (CK-MB) and troponin I showed a significant increase in diabetic rats. Simvastatin significantly improved body weight, attenuated hyperglycemia and hyperlipidemia, and ameliorated CK-MB and troponin I. Simvastatin prevented histological alterations and deposition of collagen in the heart of diabetic animals. Lipid peroxidation and nitric oxide were increased in the heart of diabetic rats whereas antioxidant defenses were decreased. These alterations were significantly reversed by simvastatin. In addition, simvastatin decreased serum inflammatory mediators and expression of NF-κB in the diabetic heart. Cardiac caspase-3 was increased in the diabetic heart and decreased following treatment with simvastatin. In conclusion, our results suggest that simvastatin alleviates DCM by attenuating hyperglycemia/hyperlipidemia-induced oxidative stress, inflammation, and apoptosis.

Title

Simvastatin Ameliorates Diabetic Cardiomyopathy by Attenuating Oxidative Stress and Inflammation in Rats.

Author

Al-Rasheed NM1,2, Al-Rasheed NM1, Hasan IH1, Al-Amin MA1, Al-Ajmi HN1, Mohamad RA3, Mahmoud AM4,5,6.

Publish date

2017

PMID

30776329

Abstract

In this study we examined whether the action of simvastatin affects re-differentiation of passaged chondrocytes and if so, whether this was mediated via changes in cholesterol or cholesterol intermediates. Bovine articular chondrocytes, of varying passage number, human knee chondrocytes and rat chondrosarcoma chondrocytes were treated with simvastatin and examined for changes in mRNA and protein expression of markers of the chondrocyte phenotype as well as changes in cell shape, proliferation and proteoglycan production. In all three models, while still in monolayer culture, simvastatin treatment alone promoted changes in phenotype and morphology indicative of re-differentiation most prominent being an increase in SOX9 mRNA and protein expression. In passaged bovine chondrocytes, simvastatin stimulated the expression of SOX9, ACAN, BMP2 and inhibited the expression of COL1 and α-smooth muscle actin. Co-treatment of chondrocytes with simvastatin plus exogenous cholesterol-conditions that had previously reversed the inhibition on CD44 shedding, did not alter the effects of simvastatin on re-differentiation. However, the co-treatment of chondrocytes with simvastatin together with other pathway intermediates, mevalonate, geranylgeranylpyrophosphate and to a lesser extent, farnesylpyrophosphate, blocked the pro-differentiation effects of simvastatin. Treatment with simvastatin stimulated expression of SOX9 and COL2a and enhanced SOX9 protein in human OA chondrocytes. The co-treatment of OA chondrocytes with mevalonate or geranylgeranylpyrophosphate, but not cholesterol, blocked the simvastatin effects. These results lead us to conclude that the blocking of critical protein prenylation events is required for the positive effects of simvastatin on the re-differentiation of chondrocytes.

Copyright © 2019 Elsevier Inc. All rights reserved.

KEYWORDS

Aggrecan; Chondrocyte; Osteoarthritis; Prenylation; SOX9; Simvastatin

Title

Simvastatin promotes restoration of chondrocyte morphology and phenotype.

Author

Terabe K1, Takahashi N2, Cobb M1, Askew EB1, Knudson CB1, Knudson W3.

Publish date

2019 Apr 15

PMID

29702479

Abstract

Simvastatin is poorly bioavailable because it is practically insoluble in water and shows dissolution rate-limited absorption. Solubilizing effects of several β-cyclodextrin (βCD) derivatives such as HPβCD, SBEβCD and DMβCD on simvastatin in aqueous solution were investigated using the phase solubility technique. The solubility diagram of simvastatin with each βCD derivative could be classified as AL-type, indicating soluble complex formation of 1:1 stoichiometry. Among the above βCD derivatives DMβCD was found to be the ideal complexing agent for improving drug solubility. The simvastatin complex with DMβCD was prepared using the co-evaporation method and was then characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and in vitro dissolution. Dissolution and pharmacokinetic studies indicated that the simvastatin/DMβCD complex exhibited an increased dissolution rate, rapid absorption, and improved bioavailability in rats compared to free drug. Maximum plasma concentration (cmax) and the time to reach it (tmax) were 21.86 μg mL-1 and 1.4 h for the drug complex, 8.25 μg mL-1 and 3.0 h for free drug, respectively. Main pharmacokinetic parameters such as tmax, cmax were significantly different (p < 0.01) between the simvastatin complex and free drug. Bioavailability of the simvastatin complex relative to free drug was up to 167.0 %.

KEYWORDS

DMβCD; complex; dissolution rate; pharmacokinetics; simvastatin; solubility

Title

Preparation and characterization of simvastatin/DMβCD complex and its pharmacokinetics in rats.

Author

Gu F1, Ning J2, Fan H2, Wu C1, Wang Y1.

Publish date

2018 Jun 1


Description :

Empty ...