Shipping to United States We Offer Worldwide Shipping
Login Wishlist

Xanthiazone

$359

  • Brand : BIOFRON

  • Catalogue Number : BD-P0398

  • Specification : 98.0%(HPLC)

  • CAS number : 212701-97-8

  • Formula : C11H13NO3S

  • Molecular Weight : 239.1

  • PUBCHEM ID : 15945057

  • Volume : 2mg

Available on backorder

Quantity
Checkout Bulk Order?

Catalogue Number

BD-P0398

Analysis Method

HPLC,NMR,MS

Specification

98.0%(HPLC)

Storage

2-8°C

Molecular Weight

239.1

Appearance

Alkaloid from the fruit of Xanthium strumarium

Botanical Source

Structure Type

Miscellaneous

Category

SMILES

CC1(C(=CC(=O)C2=C1SCC(=O)N2)CO)C

Synonyms

7-(hydroxymethyl)-8,8-dimethyl-4H-1,4-benzothiazine-3,5-dione

IUPAC Name

7-(hydroxymethyl)-8,8-dimethyl-4H-1,4-benzothiazine-3,5-dione

Applications

Density

1.4±0.1 g/cm3

Solubility

Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.

Flash Point

266.2±30.1 °C

Boiling Point

516.6±50.0 °C at 760 mmHg

Melting Point

InChl

InChI=1S/C11H13NO3S/c1-11(2)6(4-13)3-7(14)9-10(11)16-5-8(15)12-9/h3,13H,4-5H2,1-2H3,(H,12,15)

InChl Key

DNLBWKAXMIGTSS-UHFFFAOYSA-N

WGK Germany

RID/ADR

HS Code Reference

2933990000

Personal Projective Equipment

Correct Usage

For Reference Standard and R&D, Not for Human Use Directly.

Meta Tag

provides coniferyl ferulate(CAS#:212701-97-8) MSDS, density, melting point, boiling point, structure, formula, molecular weight etc. Articles of coniferyl ferulate are included as well.>> amp version: coniferyl ferulate

No Technical Documents Available For This Product.

PMID

30813410

Abstract

Extra virgin olive oil (EVOO) has been reported to have a distinct influence on gut microbiota in comparison to other fats, with its physiological benefits widely studied. However, a large proportion of the population consumes olive oil after a depurative process that not only mellows its taste, but also deprives it of polyphenols and other minority components. In this study, we compare the influence on the intestinal microbiota of a diet high in this refined olive oil (ROO) with other fat-enriched diets. Swiss Webster mice were fed standard or a high-fat diet enriched with EVOO, ROO, or butter (BT). Physiological parameters were also evaluated. At the end of the feeding period, DNA was extracted from feces and the 16S rRNA was pyrosequenced. The group fed ROO behaved differently to the EVOO group in half the families with statistically significant differences among the diets, with higher comparative levels in three families—Desulfovibrionaceae, Spiroplasmataceae, and Helicobacteraceae—correlating with total cholesterol. These results are again indicative of a link between specific diets, certain physiological parameters and the prevalence of some taxa, but also support the possibility that polyphenols and minor components of EVOO are involved in some of the proposed effects of this fat through the modulation of the intestinal microbiota

KEYWORDS

olive oil, polyphenols, butter, next generation sequencing, gut microbiota

Title

Refined versus Extra Virgin Olive Oil High-Fat Diet Impact on Intestinal Microbiota of Mice and Its Relation to Different Physiological Variables

Author

Nieves Martinez,1 Isabel Prieto,2 Marina Hidalgo,1 Ana Belen Segarra,2 Ana M. Martinez-Rodriguez,3 Antonio Cobo,1 Manuel Ramirez,2 Antonio Galvez,1 and Magdalena Martinez-CaNamero1,*

Publish date

2019 Feb

PMID

29866906

Abstract

The tick-borne pathogen Borrelia burgdorferi is responsible for approximately 300,000 Lyme disease (LD) cases per year in the United States. Recent increases in the number of LD cases, in addition to the spread of the tick vector and a lack of a vaccine, highlight an urgent need for designing and developing an efficacious LD vaccine. Identification of protective epitopes that could be used to develop a second-generation (subunit) vaccine is therefore imperative. Despite the antigenicity of several lipoproteins and integral outer membrane proteins (OMPs) on the B. burgdorferi surface, the spirochetes successfully evade antibodies primarily due to the VlsE-mediated antigenic variation. VlsE is thought to sterically block antibody access to protective epitopes of B. burgdorferi. However, it is highly unlikely that VlsE shields the entire surface epitome. Thus, identification of subdominant epitope targets that induce protection when they are made dominant is necessary to generate an efficacious vaccine. Toward the identification, we repeatedly immunized immunocompetent mice with live-attenuated VlsE-deleted B. burgdorferi and then challenged the animals with the VlsE-expressing (host-adapted) wild type. Passive immunization and Western blotting data suggested that the protection of 50% of repeatedly immunized animals against the highly immune-evasive B. burgdorferi was antibody mediated. Comparison of serum antibody repertoires identified in protected and nonprotected animals permitted the identification of several putative epitopes significantly associated with the protection. Most linear putative epitopes were conserved between the main pathogenic Borrelia genospecies and found within known subdominant regions of OMPs. Currently, we are performing immunization studies to test whether the identified protection-associated epitopes are protective for mice.

KEYWORDS

Lyme disease, Borrelia burgdorferi, VlsE, vls locus, epitopes, surface antigens, immunization, protection

Title

Identification of Surface Epitopes Associated with Protection against Highly Immune-Evasive VlsE-Expressing Lyme Disease Spirochetes

Author

Maliha Batool,a Salvador Eugenio C. Caoili,b Lawrence J. Dangott,c Ekaterina Gerasimov,d Yurij Ionov,e Helen Piontkivska,f Alex Zelikovsky,d,g Suryakant D. Waghela,a and Artem S. Rogovskyycorresponding authora

Publish date

2018 Aug;

PMID

24624012

Abstract

The genus Scelio is a cosmopolitan and speciose group of solitary parasitoids of the eggs of short-horned grasshoppers (Orthoptera: Acrididae). A number of these hosts are important pests, including plague locusts of the genus Schistocerca. Species of Scelio are recognized as potentially important biological control agents, but this possibility has yet to be fully realized, in part because the species-level taxonomy is still incompletely developed. The species of the pulchripennis group have been recently revised. As a continuation of this effort, here we revise the Afrotropical species of Scelio, excluding the pulchripennis species group. Sixty two (62) species are treated, 48 of which are new. Species are classified into the following species groups: ernstii (12 species, 9 new), howardi (23 species, 19 new), ipomeae (6 species, 5 new), irwini (4 species, 3 new), simoni (3 new species) and walkeri (12 species, 9 new). Keys to species groups and to the species within each group are provided. New species described are: S. albatus Yoder, sp. n., S. aphares Yoder, sp. n., S. apospastos Yoder, sp. n., S. ardelio Yoder, sp. n., S. aurantium Yoder, sp. n., S. balo Valerio & Yoder, sp. n., S. bayanga Yoder, sp. n., S. bubulo Yoder, sp. n., S. cano Yoder, sp. n., S. clypeatus Yoder, sp. n., S. concavus Yoder, sp. n., S. copelandi Yoder, sp. n., S. crepo Yoder, sp. n., S. destico Yoder, sp. n., S. dupondi Yoder, sp. n., S. effervesco Yoder, sp. n., S. erugatus Yoder, sp. n., S. exophthalmus Yoder, sp. n., S. fremo Valerio & Yoder, sp. n., S. gemo Yoder, sp. n., S. grunnio Yoder, sp. n., S. harinhalai Yoder, sp. n., S. igland Yoder, sp. n., S. impostor Yoder, sp. n., S. irwini Yoder, sp. n., S. janseni Yoder, sp. n., S. latro Yoder, sp. n., S. memorabilis Yoder, sp. n., S. modulus Yoder, sp. n., S. mutio Yoder, sp. n., S. ntchisii Yoder, sp. n., S. parkeri Yoder, sp. n., S. phaeoprora Yoder, sp. n., S. pilosilatus Yoder, sp. n., S. pipilo Yoder, sp. n., S. quasiclypeatus Yoder, sp. n., S. retifrons Yoder, sp. n., S. ructo Yoder, sp. n., S. scomma Yoder, sp. n., S. simoni Yoder, sp. n., S. simonolus Yoder, sp. n., S. somaliensis Yoder, sp. n., S. susurro Yoder, sp. n., S. tono Yoder, sp. n., S. transtrum Yoder, sp. n., S. tritus Yoder, sp. n., S. ululo Yoder, sp. n., S. vannoorti Valerio & Yoder, sp. n. The following species are redescribed: S. afer Kieffer, S. chapmani Nixon, S. howardi Crawford, S. ipomeae Risbec, stat. n., S. mauritanicus Risbec, S. philippinensis Ashmead, S. remaudierei Ferriere, S. striatus Priesner,S. taylori Nixon, and S. zolotarevskyi Ferriere. The genus Lepidoscelio Kieffer is treated as a junior synonym of Scelio Latreille, syn. n.; its type species, Lepidoscelio fuscipennis Kieffer, 1905 is transferred to Scelio, renamed Scelio obscuripennis Johnson, nom. n. (preoccupied by Scelio fuscipennis Ashmead, 1887), and redescribed. The following additional species are transferred from Lepidoscelio to Scelio: S. cayennensis (Risbec), comb. n., S. insularis Ashmead, rev. comb., S. luteus (Cameron), comb. n., S. thoracicus Ashmead, rev. comb. Lectotypes are designated for S. africanus Risbec, S. ipomeae Risbec, S. mauritanicus Risbec, S. remaudierei Ferriere, S. sudanensis Ferriere, and S. zolotarevskyi Ferriere. Scelio gaudens Nixon is a junior synonym of Scelio striatus Priesner, syn. n.; Scelio africanus Risbec and Scelio clarus Fouts are both junior synonyms of Scelio afer Kieffer, syn. n.; Scelio sudanensis Ferriere and Scelio cheops Nixon are both junior synonyms of Scelio zolotarevskyi Ferriere, syn. n.; Scelio cahirensis Priesner is a junior synonym of Scelio mauritanicus Risbec, syn. n. The name Scelio chapmanni Nixon is an incorrect original spelling, requiring an emendation to S. chapmani. Digital versions of the identification keys are available at http://www.waspweb.org/Platygastroidea/Keys/index.htm

KEYWORDS

Africa, Scelioninae, biodiversity informatics, locust, grasshopper, new species, taxonomy

Title

Monograph of the Afrotropical species of Scelio Latreille (Hymenoptera, Platygastridae), egg parasitoids of acridid grasshoppers (Orthoptera, Acrididae)

Author

Matthew J. Yoder,1,5 Alejandro A. Valerio,1 Andrew Polaszek,2 Simon van Noort,3 Lubomir Masner,4 and Norman F. Johnson1

Publish date

2014;